

STRUCTURAL STABILITY ASSESSMENT REPORT

Martin Lake Steam Electric Station

Submitted To: Luminant

1601 Bryan Street Dallas, TX 75201

Submitted By: Golder Associates Inc.

500 Century Plaza Drive, Suite 190

Houston, TX 77073 USA

JEFFREY B. FASSETT

Professional Engineering Firm Registration Number F-2578

October 2016 Project No. 164816402

Table of Contents

1.0	INTRODUCTION	1
1.1	Purpose	1
1.2	Site Background	1
1.2	2.1 The Bottom Ash Ponds (BAPs)	1
1.2	2.2 New Scrubber Pond (NSP)	1
1.2	2.3 Permanent Disposal Pond-5 (PDP-5)	2
1.3	Previous Slope Stability Evaluations	2
2.0	SUBSURFACE CONDITIONS	3
2.1	Site Geology	3
2.	1.1 Bottom Ash Ponds and Scrubber Pond	3
	2.1.1.1 Subsurface Investigations and Laboratory Testing	3
	2.1.1.2 Subsurface Site Conditions	
2.	1.2 Permanent Disposal Pond - 5	4
	2.1.2.1 Subsurface Investigations and Laboratory Testing	4
3.0	STRUCTURAL STABILITY ASSESSMENT - §257.73(d)(1)(i)-(vii)	6
3.1	Foundations and Abutments - §257.73(d)(1)(i)	6
3.2	Slope Protection - §257.73(d)(1)(ii)	6
3.3	Dikes (Embankment) - §257.73(d)(1)(iii)	6
3.3	3.1 Bottom Ash Ponds and Scrubber Pond	6
3.3	3.2 Permanent Disposal Pond – 5	7
3.4	Vegetated Slopes - §257.73(d)(1)(iv)	7
3.5	Spillways - §257.73(d)(1)(v)	7
3.6	Hydraulic Structures - §257.73(d)(1)(vi)	7
3.7	Downstream Slopes Adjacent to Water Body - §257.73(d)(1)(vii)	8
3.8	Structural Stability Deficiencies - §257.73(d)(2)	8
4.0	CONCLUSION	9
5.0	CERTIFICATION	10
6.0	REFERENCES	11

i

List of Figures

Figure 1 General Site Map

List of Appendices

Boring Location Map & Boring Logs Laboratory Test Results Appendix A

Appendix B

1.0 INTRODUCTION

1.1 Purpose

The "Disposal of Coal Combustion Residuals (CCR) from Electric Utilities rule" (40 Code of Federal Regulations (40 CFR) Part 257), effective October 19, 2015, requires that existing CCR surface impoundments meeting the requirements of §257.73(b) conduct initial and periodic structural stability assessments in accordance with §257.73(d). This report provides the structural stability assessment for the Martin Lake Steam Electric Station's (MLSES's) CCR Impoundments, identified as the Bottom Ash Ponds (BAPs) – the West Ash Pond (WAP) and the East Ash Pond (EAP) – the New Scrubber Pond (NSP), and the Permanent Disposal Pond-5 (PDP-5).

1.2 Site Background

The MLSES generates bottom ash, fly ash, and flue gas desulfurization (FGD) material during electricity generation. The following surface impoundments, shown on Figure 1, are in operation at the MLSES and subject to the CCR rule.

1.2.1 The Bottom Ash Ponds (BAPs)

The BAPs include the West Ash Pond (WAP) and the East Ash Pond (EAP). The WAP and EAP receive sluice water from bottom ash dewatering bins and other process wastewater sources that typically include bottom ash fines. The BAPs were originally constructed in 1977 with a 2-feet thick compacted clay liner. In 1989, the WAP was relined with a 60-mil high density polyethylene (HDPE) geomembrane over 3 feet of clay on the sideslopes, and the floor with a double 60-mil HDPE geomembrane with a geonet leak detection layer overlying an 18-inch thick clay liner. Both the sideslopes and floor are overlain with a 4-inch thick concrete revetment mat. In 2010 the sideslopes and floor of the EAP were relined with a double 60-mil HDPE geomembrane with a geonet leak detection layer overlying an 18-inch thick clay layer. A geotextile layer was placed between the lower geomembrane and the clay. The liner system on the sideslopes and floor of the EAP are overlain with a 4-inch thick concrete revetment mat.

1.2.2 New Scrubber Pond (NSP)

The NSP, abutting the southeastern portion of the WAP and the southern portion of the EAP, is used to manage FGD wastes and discharge from the sludge thickener sumps, the plant yard sumps, and stormwater management areas. Water collecting in the NSP serves as wet-well make-up water as well as emergency make-up water in the scrubber area. The NSP was originally constructed with the BAPs and lined with clay liner. In 1989, the NSP was relined with a double 60-mil HDPE geomembrane with a geonet leak detection layer. A geotextile layer was placed between the lower geomembrane and the subgrade and a 4-inch thick concrete revetment mat covers the upper geomembrane.

1.2.3 Permanent Disposal Pond-5 (PDP-5)

PDP-5 is primarily used to manage excess liquids including stormwater and excess process wastewater from both the New Scrubber Pond and Bottom Ash Ponds. Recovered CCR wastewaters are received in PDP-5 during cleaning cycles. PDP-5 was constructed in 2010/2011, above PDP-1, PDP-2, and PDP-3, which were previously closed as landfills. PDP-5 is lined with a 3-foot thick clay liner on the sideslopes and a 2-foot thick clay liner on the floor, both overlain with a 0.5-foot thick protective cover soil layer.

1.3 Previous Slope Stability Evaluations

Golder and ETTL Engineers and Consultants (ETTL) have previously performed evaluations on the BAPs, the NSP and PDP-5 as part of the following reports submitted to Luminant:

- Ash and Scrubber Ponds and Permanent Disposal Pond #4, Stability Investigation Report, Luminant Martin Lake SES, Rusk County, Texas, Golder, dated December 2012.
- Geotechnical Investigation, Luminant Martin Lake SES, Reline East Ash Disposal Pond, Tatum, Texas, ETTL, dated December 2008.

The studies found the BAPs and NSP slopes to be adequately stable.

ETTL performed stability evaluations on PDP-5 in 2009, as presented in the following report:

- Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas. ETTL Engineers and Consultants Inc. Tyler, Texas, dated July 2008.
- Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas – Supplemental Seepage and Slope Stability. ETTL Engineers and Consultants Inc., dated October 2009.

The above reports found the design slopes of PDP-5 to be stable as long as drainage is functional, preventing the embankments from saturating.

2.0 SUBSURFACE CONDITIONS

The MLSES site is located in the Martin Creek area which is situated in the Sabine River Valley and lies on the west flank of the Sabine Uplift. The formations in the region comprise sedimentary deposits of continental and marine origin, mainly the lower Wilcox Group flanked by younger beds like the Carrizo Sand. In the Martin Creek area, the Wilcox formation is estimated to be about 650- to 700-feet thick and consists of sandy clays, silty sands, clays, and lignite in varying amounts. The Rockdale formation is the major component in the area among the sediments of the Wilcox group occupying approximately the middle four-fifths of the Wilcox Section. The Wilcox Group is underlain by the Paleocene Midway Group (containing Upper Willis and Lower Kincaid), which is estimated to be 900-feet thick around the site, and is composed mainly of silty clay and clay. The Midway Group overlies a section of Cretaceous Rocks that are approximately 7000-feet thick (Rone Engineers, 1984).

2.1 Site Geology

2.1.1 Bottom Ash Ponds and Scrubber Pond

2.1.1.1 Subsurface Investigations and Laboratory Testing

Information from previous subsurface investigations was used to characterize the subsurface site conditions. In 2008, ETTL conducted a subsurface investigation for the EAP as part of an effort to reline the pond. ETTL drilled twelve borings along the crest of the EAP embankment at approximate elevation 330 feet – mean sea level (ft-msl). All borings were 40-feet deep except one which was 100-feet deep. The boring map and boring logs are presented in Appendix A. Geotechnical laboratory testing – moisture contents, Atterberg limits, grain size distribution, and consolidated-undrained (CU) triaxial compression tests - was conducted on selected samples. The soil index testing results presented as part of the boring logs, while the CU test results from ETTL are summarized in Appendix B.

Golder conducted a subsurface investigation for the WAP and NSP in December 2012. Golder completed eight, 50- to 60-foot deep borings along the crest of the pond embankments at approximate elevation 330 ft-msl. The boring map and boring logs are presented in Appendix A. As part of the investigation, laboratory testing was performed on selected samples in accordance with commonly accepted methods and practices. Undisturbed and disturbed soil samples were tested to determine water content, Atterberg limits, grain size distribution, and shear strength. Water content determination was performed in accordance with ASTM D2216; Atterberg limits were determined in accordance with ASTM D4318; and grain size distribution was performed in accordance with ASTM D422. Shear strength testing consisted of unconsolidated-undrained (UU) triaxial compression in general accordance with ASTM D2850. Laboratory test results are presented in Appendix B.

The findings from the above subsurface investigations were reviewed for their applicability to this study, and are summarized in the following sections.

2.1.1.2 Subsurface Site Conditions

The above borings consisted of fill and native soils. The soils encountered in the borings generally consisted of stiff to hard sandy clays and firm to very dense sands. The subsurface stratigraphy generally consisted of interchanging layers of clays, sandy clays, clayey sands and non-plastic sands. The clayey sand layers ranged in thickness from 2 to 16 feet where encountered. The sandy clay and clay layers are described as firm to hard, low to high plasticity clays and vary in thickness from 2 to 38 feet. Loose to very dense, silty or poorly graded sand was typically encountered beneath or interlayered with the sandy clay/clayey sand strata. The 100-foot boring by ETTL showed deeper layers of very dense silty sand with intermittent layers of hard low plasticity clay.

Water was encountered in each of the eight borings performed by Golder, ranging between El. 296.1 to 303.3 ft-msl. The average water elevation measured in the Golder boreholes, during drilling, was at El. 300.3 ft-msl. The ETTL borings measured the water level to range between El. 304 to 309 ft-msl, with an average water level of El. 306 ft-msl, coinciding with the normal pool elevation of the adjacent Martin Lake (a man-made reservoir).

Groundwater levels measured in 2015, from wells surrounding the BAPs, varied from approximately El. 304 ft-msl in the southeast corner to El. 307 ft-msl in the northwest corner.

2.1.2 Permanent Disposal Pond - 5

2.1.2.1 Subsurface Investigations and Laboratory Testing

In 2008, ETTL performed a pre-construction subsurface investigation for PDP-5 that included a total of eleven borings within the PDP-5 footprint. In addition, three cone penetrometer tests (CPTs) were performed. As part of a supplemental investigation in 2009, ETTL drilled a further three borings within the pond footprint. The map of the borings, and boring and CPT logs are presented in Appendix A.

ETTL performed laboratory tests including natural moisture contents (ASTM D2216), Atterberg limits (ASTM D4318), particle size distributions (ASTM D 1140 and ASTM D422). Unconsolidated-undrained (UU) triaxial compression tests (ASTM D2850) were performed to determine the strength characteristics of cohesive substrata. Direct shear tests (ASTM D3080) were performed on coarser materials including remolded bulk ash samples. Consolidation tests (ASTM D2435) and permeability tests (ASTM D5084) were also performed but are not relevant to the current study. The results of the laboratory tests performed by ETTL are presented in Appendix B.

2.1.2.2 Subsurface Site Conditions

Most of the above borings were drilled through the bottom ash within closed PDP-1, 2, and 3. Based on particle size, the ash classifies as very loose to medium dense poorly graded sands in some locations, to silts in other locations and depths. The borings passing through existing embankments of PDP-1, 2, and 3 contained medium stiff to very stiff clay of low plasticity and/or high plasticity clay with clayey sand. Native soils were identified in deeper borings as very dense silt with hard low plasticity clay seams.

Two borings located outside of the ash encountered groundwater approximately between El. 355 to 368 ft-msl. Groundwater levels measured in 2015, from wells surrounding PDP-5, indicate that the groundwater level varies from approximately El. 355 ft-msl in the north to El. 375 ft-msl in the south.

164816402

3.0 STRUCTURAL STABILITY ASSESSMENT - §257.73(d)(1)(i)-(vii)

The CCR rules require conducting periodic structural stability assessments by a qualified professional engineer to document whether the design, construction, operation and maintenance is consistent with recognized and generally accepted good engineering practices for the maximum volume of CCR and CCR wastewater that can be impounded therein.

3.1 Foundations and Abutments - §257.73(d)(1)(i)

As noted above, the foundation soils for the BAPs and NSP generally consist of stiff to hard sandy clays and compact to dense sand. As discussed below, the embankment fill appears to be well-compacted. The foundation soils and abutments of the BAPs and NSP are stable.

Parts of the foundation soils for PDP-5 embankments are founded on the existing bottom ash of underlying PDP-1, 2, and 3 which were previously closed as landfills. Based on particle size, the bottom ash classifies as very loose to medium dense, poorly graded sand at some locations and silts at other locations and depths. Based on the above mentioned ETTL reports and the preparation of foundation materials during construction, the foundations and abutments are generally considered to be stable. The possibility of liquefaction of bottom ash in the foundation is considered in the Safety Factor Assessment report (Golder, 2016).

3.2 Slope Protection - §257.73(d)(1)(ii)

The downstream slopes of the BAPs, NSP and PDP-5 embankments are protected from erosion and deterioration by the establishment of a vegetative cover. Portions of the EAP and the NSP adjacent to Martin Lake are protected from wave action with roller compacted concrete. The vegetative cover is inspected weekly for erosion, signs of seepage, animal burrows, sloughing, and plants that could negatively impact the embankment. For the BAPs and NSP, the interior slopes are protected from wave action by concrete revetment mats or riprap. The interior slopes of PDP-5 are covered with vegetative cover for erosion protection.

3.3 Dikes (Embankment) - §257.73(d)(1)(iii)

3.3.1 Bottom Ash Ponds and Scrubber Pond

No construction documentation or testing details of the original BAPs and NSP embankment fills are available. Based on the borings, the embankments were constructed using a clayey fill likely from an on-site borrow source. Golder's subsurface investigation of 2012 and ETTL's investigation of the EAP in 2008 comprised boreholes drilled into the embankment. These borings found the embankment soils to generally consist of stiff to hard sandy clay, clayey sand, and clay, consistent with well-compacted fill. No significant repairs have been performed to the BAPs and NSP embankments since their initial construction, except the relining of the WAP and NSP in 1989, and the relining of the EAP in 2010. Based on a review of past

inspection reports and on recent observations, the BAPs and NSP embankments are sufficient to withstand the range of loading conditions they are subjected to.

3.3.2 Permanent Disposal Pond – 5

PDP-5 was constructed with on-site soils in 2010/2011. A 3-foot thick clay layer was placed over PDP-1, PDP-2 and PDP-3, beneath the new PDP-5 embankment. Sections of the embankment overlie the bottom ash from the closed ponds.

The clay liner was specified to be installed and compacted in 6-inch lifts, to at least 95% Standard Proctor maximum dry density at optimum moisture content to 4% above. The embankment was specified to be constructed in loose lifts of 8-inch maximum thickness, followed by compaction to 95% standard Proctor maximum dry density.

Based on a review of past inspection reports and on recent observations, each of the embankments are sufficient to withstand the range of loading conditions they are subjected to.

3.4 Vegetated Slopes - §257.73(d)(1)(iv)

As of June 14, 2016 the US Court of Appeals for the District of Columbia Circuit issued an Order that remanded and vacated the CCR rule requirement that vegetation on the exterior portions of dikes on CCR surface impoundments be maintained not to exceed six inches in height. EPA will issue a new rulemaking in the future to address this issue.

Each of the surface impoundments at the MLSES are inspected weekly. Luminant maintains the vegetation in a manner that ensures adequate inspections can be conducted.

3.5 Spillways - §257.73(d)(1)(v)

There are no spillways on any of the surface impoundments.

3.6 Hydraulic Structures - §257.73(d)(1)(vi)

The only subsurface penetrations in the BAPs and NSP are 24-inch dewatering lines that pass through the WAP and the NSP embankments, which are used for decanting process wastewater from within the ponds. These dewatering lines connect to a collection sump at the low pressure ash water pump station located to the south of the NSP. All other piping passes above the crest of the embankments.

According to as-built drawings prepared by HDR Engineering, Inc., a 14-inch diameter HDPE overflow pipe, encased in a 20-inch diameter HDPE pipe passes through the southern embankment. Flow through this pipe is controlled with a valve located near the toe of the embankment. Discharge from PDP-5 is accomplished using a submersible pump suspended from a pump platform adjacent to the overflow pipe along the southern embankment. All other piping passes above the crest of the embankment.

No significant deterioration, deformation, distortion, bedding deficiencies, sedimentation, or debris were observed that may negatively affect the operation of the surface impoundments.

3.7 Downstream Slopes Adjacent to Water Body - §257.73(d)(1)(vii)

The east slope of the EAP and the south slope of the NSP are adjacent to Martin Lake. The normal pool elevation of Martin Lake is at El. 306 ft-msl. This water level is relatively shallow against the exterior slope. Moreover, the exterior slopes of both the east side of the EAP and the south side of the NSP are lined with roller compacted concrete to protect these slopes from erosion, as well as seepage. Nevertheless, the impact of drawdown of Martin Lake on the stability of the BAP and NSP embankments is considered in the Safety Factor Assessment report (Golder, 2016). The results of stability analysis indicate that the factor of safety for rapid drawdown conditions is approximately 1.6, which exceeds the typically required value of 1.30.

3.8 Structural Stability Deficiencies - §257.73(d)(2)

No structural stability deficiencies were identified during this assessment.

Jeffrey B. Fassett, PE

Associate Geotechnical Engineer

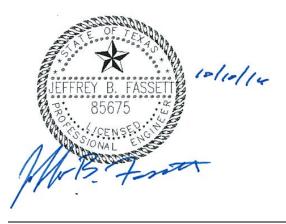
4.0 CONCLUSION

Based on our review of the information provided by Luminant, on information prepared by Golder Associates Inc., and on our on-site observations, no structural stability deficiencies were identified in the surface impoundments during this assessment.

Golder appreciates the opportunity to assist Luminant with this project. If you have any questions, or require further assistance from Golder, please contact the undersigned at (281) 821-6868.

GOLDER ASSOCIATES INC.

Varenya Kumar Staff Engineer


VK/JBF/kc

5.0 CERTIFICATION

I hereby certify that this report has been prepared in general accordance with normally accepted civil engineering practices and in accordance with the requirements of 40 CFR 257.73(d).

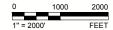
10

Jeffrey B. Fassett, PE Golder Associates Inc.

Firm Registration Number F-2578

6.0 REFERENCES

ETTL Engineers and Consultants Inc. 2008. Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas.


11

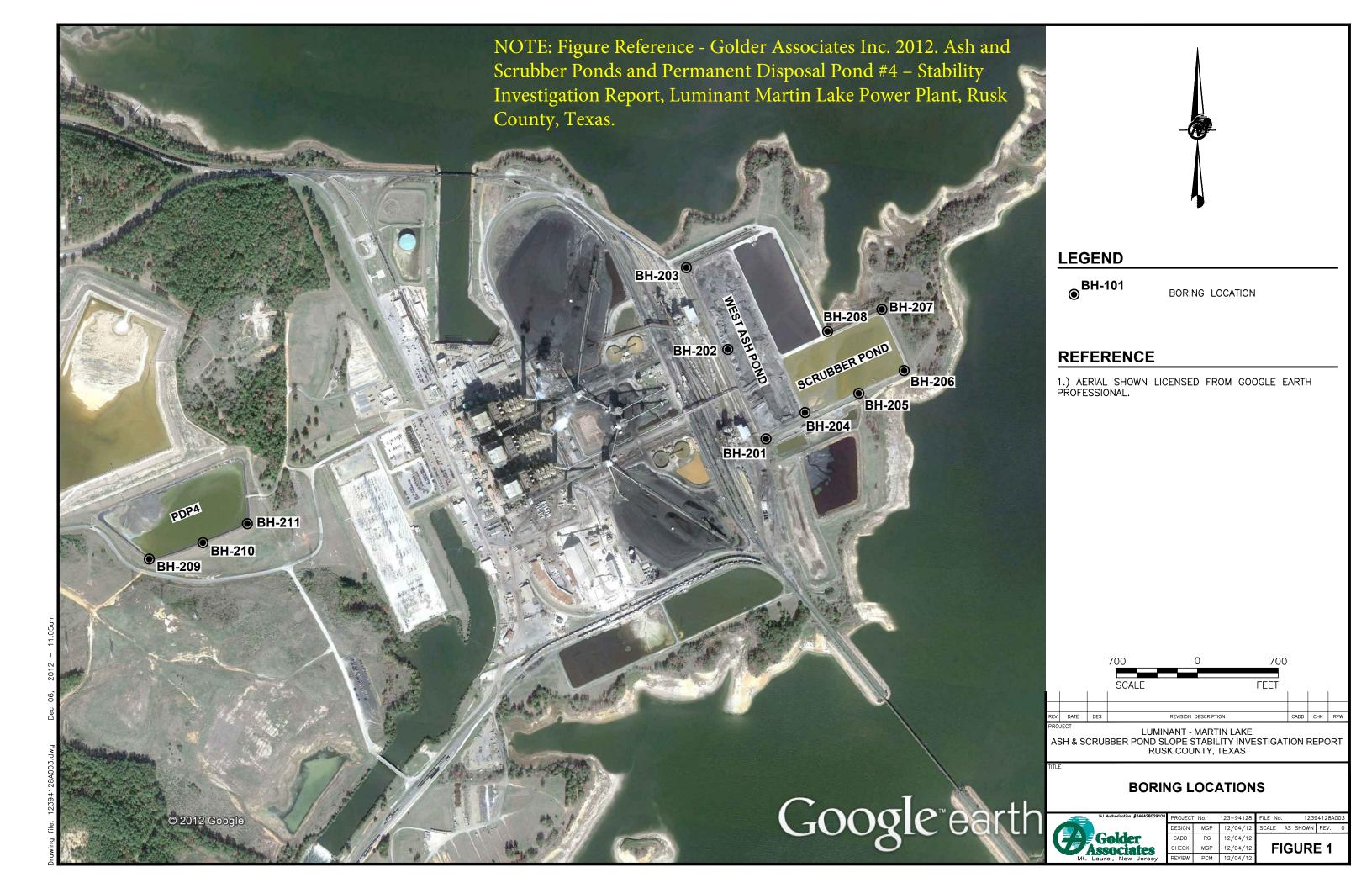
- ETTL Engineers and Consultants Inc. 2009. Geotechnical Investigation, Luminant Martin Lake SES, Vertical Expansion of Permanent Disposal Ponds 1, 2, and 3, Tatum, Texas Supplemental Seepage.
- Golder Associates Inc. 2012. Ash and Scrubber Ponds and Permanent Disposal Pond #4 Stability Investigation Report, Luminant Martin Lake Power Plant, Rusk County, Texas.
- Golder Associates Inc. 2016. Safety Factor Assessment Report, Luminant Martin Lake Steam Electric Station.
- HDR Engineering Inc. 2011. Martin Lake Steam Electric Station, Rusk County, Texas Permanent Disposal Pond #5 As Recorded Drawings.
- Pastor, Behling & Wheeler Inc. 2016. Annual CCR Inspection Report. Luminant Martin Lake Steam Electric Station, Ash Pond Area, Permanent Disposal Pond No. 5 & A1 Area Landfill, Rusk & Panola County, Texas

Professional Engineering Firm Registration Number F-2578

CLIENT LUMINANT POWER MARTIN LAKE

CONSULTANT

YYYY-MM-DD	2016-09-22
PREPARED	VK
DESIGNED	TNB
REVIEWED	MX
APPROVED	JBF


PROJECT
2016 COAL COMBUSTION RESIDUALS
ENGINEERING SERVICES

GENERAL SITE MAP

PROJECT NO.	REV.	FIGURE
164816402		1

APPENDIX A BORING LOCATION MAP & BORING LOGS

BOTTOM ASH PONDS AND SCRUBBER POND

Fax: (281) 821-6870

500 Century Plaza Drive, Suite 190
Houston, Texas 77073
Telephone: (281) 821-6868
Fax: (281) 821-6870

BORING NUMBER BH-201

PAGE 1 OF 2

	CLIEN	NT Lu	minant PROJE	PROJECT NAME Pond Slope Stability								
				PROJECT LOCATION _Martin Lake								
- 1								HOLE	SIZE 8 inches			
- 1												
				∇								
- 1				AT END OF DRILLING AFTER DRILLING								
ŀ												
IARTINLAKE.GPJ	O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80			
128M			Remove 8" sandy gravel as road base	- SH	44		5.0					
G/94			(CL) SILTY CLAY, low plasticity, some sand, trace gravels, red, dry, hard	1	44		5.0					
B TESTIN			(SC) CLAYEY SAND, non-plastic, some silt, tan and gray, dry, compact	SS 2	58	15-10-7 (17)			•			
N LAKE\LA	5		(CL) SANDY CLAY, low plasticity, some silt, red, tan, and gray, mottled, dry, stiff	SH 3	44		3.5					
TYMARTI			(SC) CLAYEY SAND, fine, subangular, non-plastic, little silt, tan and gray, mottled, dry	SH 4	38		1.5		• I-1			
PE STABIL	10		(CL) SANDY CLAY, low plasticity, little silt and gravel, red, tan, and gray, mottled, dry, hard	SH 5	42		4.5		•			
GEOTECH BH PLOTS - GINT STD US LAB GDT - 12/4/12 15:58 - P. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKELAB TESTING 94/128MARTINLAKE. GPJ	 15 _		some silt, no gravel, very stiff at 13.0'	SH 6	58		3.5					
012 PROJECT FOLDERS	 - 20		some sand veins at 18.0'	SH 7	38		3.0					
DT - 12/4/12 15:58 - P:_2	 - 25		gray, moist at 23.0'	SH 8	58		2.5					
OTS - GINT STD US LAB.G	30		(SC) CLAYEY SAND, fine, subangular, low plasticity, some to little silt	SH 9	71		2.0					
GEOTECH BH PL	 35		some silt, tan and gray, mottled, moist at 33.0'	SS 10	100	9-7-9 (16)						

BORING NUMBER BH-201 PAGE 2 OF 2

	CLIE	NT Lu	minant PROJE	PROJECT NAME Pond Slope Stability								
	PROJ	IECT N	UMBER 123-94128 PROJE	PROJECT LOCATION Martin Lake								
	(#) (#)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80			
94128MARTINLAKE.GPJ	 40 -		some silty sand veins at 38.0'	SH 11	50		2.0					
KELAB TESTING	 45		(SM) SILTY SAND, fine, subangular, non-plastic, little clay, tan and red, wet, compact	SS 12	100	11-11-11 (22)	-		•			
STABILITY/MARTIN LA	 50		(SP) SAND, medium to fine, subangular, poorly graded, some silt, tan, wet, compact	SS 13	100	5-9-11 (20)	-					
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P._2012 PROJECT FOLDERS\123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKELAB TESTING\94128MARTINLAKE.GPJ			Bottom of borehole at 50.0 feet.									

BORING NUMBER BH-202 PAGE 1 OF 2

	CLIENT L											
- 1												
			UMBER 123-94128									
				GROUND BLEVATION 330 ft HOLE SIZE 8 inches								
- 1			ONTRACTOR WEST Drilling									
			HOLLOW Stem Auger									
			/ FW CHECKED BY MP									
L	OIE	<u> </u>										
ARTINLAKE.GPJ	0 E (#)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
NG\94128M	-		 Remove 6" sandy gravel from road bed (CH) CLAY, medium to high plasticity, some silt, trace fine tan and gray, dry, very stiff to hard 	e sand,	SH 1	50		4.5				
LAB TESTII	-		some sand at 2.0'		SH 2	63		3.5		4		
TIN LAKE	5 _				SH 3	50		5.0				
ILITY\MAR	-		(CL) SANDY CLAY, low plasticity, some to little silt, tan ar	nd grav	SH 4	63		3.75				
OPE STAB	- 10 _		mottled, moist, firm	iu gray,	SH 5	42		4.0				
DERSY123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/LAB TESTING/94128MARTINLAKE.GFJ	- - - - 15_		some sand seams, very stiff at 13.0'		SH 6	42		3.0		•		
	- - - 20		(CL) SILTY CLAY, medium to high plasticity, little find san brown, moist, firm	d,	SH 7	58		1.0				
- 12/4/12 15:58 - P:\ 201	- - - 25		low plasticity, gray, moist at 23.0'		SH 8	71		5.0		•		
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 16:58 - Pr. 2012 PROJECT FOL	- - 30 _			ay, gray	SS 9	83	7-7-9 (16)			• □		
GEOTECH BH F	- - 35		(SC) CLAYEY SAND, fine, subangular, low plasticity, som tan and gray, wet, compact	e silt,	SS 10	100	3-5-6 (11)	_		A0		

BORING NUMBER BH-202 PAGE 2 OF 2

		NT Lur		PROJECT NAME Pond Slope Stability PROJECT LOCATION Martin Lake								
	0EPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
3\94128MARTINLAKE.GPJ	 40		interbedded clay and sand seams at 38.0'		SS 11	100	8-7-8 (15)					
SLOPE STABILITY/MARTIN LAKE\LAB TESTING\94128MARTINLAKE.GPJ	 45 <u>-</u> 		no seams at 43.0'		SS 12	89	4-4-4 (8)					
PE STABIL	- 50		(SP) SAND, medium to fine, poorly graded, subangular, non-plastic, some silt and clay, wet, loose		SS 13	100	2-3-4 (7)			A •		
SLO			Bottom of borehole at 50.0 feet.									

GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P:_2012 PROJECT FOLDERS\123-94128 LUMINANT POND \$

Golder Associates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

BORING NUMBER BH-203

PAGE 1 OF 2

	LIEN	NT Lu	minant	PROJECT NAME Pond Slope Stability								
					ROJECT LOCATION Martin Lake							
	ATE	STAR	TED 10/30/12	GROUNE	DUND ELEVATION 330 ft HOLE SIZE 8 inches							
	RILI	ING C	ONTRACTOR WEST Drilling	GROUND WATER LEVELS:								
	RILI	ING N	ETHOD Hollow Stem Auger									
L	.ogc	SED B										
N	IOTE	S		AFTER DRILLING								
ARTINLAKE.GPJ	O UEPIH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
1128M		10 0°	remove 14" sandy GRAVEL as roadbed		SH	44		2.75				
STING/94	-		(CL) SILTY CLAY, low plasticity, little sand, gray and tan, r dry, very stiff (CL) SANDY CLAY, low plasticity, some silt, gray and tan,		1 SH							
AB T	_		dry, stiff	mottled,	2	50		1.5				
N LAKE'L	5		low plasticity, some sand veins, soft		SH 3	42		1.25				
TYMARTI	-		(CL-CH) CLAY, low plasticity to medium plasticity, some si to light gray, dry, stiff	lt, dark	SH 4	67		1.75		D		
E STABILI	10		very stiff at 8.0'		SH 5	50		3.25		•		
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.Y. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE(LAB TESTING/94/128MARTINLAKE.GP.)	- - 15 -		low plasticity, some silt and fine sand, little coarse sand an gravels, subrounded, red and tan, stiff at 13.0'		SH 6	38		1.5				
3 - P:_2012 PROJECT FO	- 20 - -		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, dry, stiff	mottled,	SH 7	44		2.0				
- 12/4/12 15:5	25 		(SC) CLAYEY SAND, low plasticity, some silt, tan and gray mottled, compact, moist	/,	SS 8	94	3-7-7 (14)	-		•		
BH PLOTS - GINT STD US LAB.GDT	30 - -		$_{\underline{ abla}}$ low plasticity, with grey silty clay, some sand, tan at 28.0'		SS 9	94	4-7-8 (15)	-				
GEOTECH	- 35		(SM) SILTY SAND, non-plastic, grading to sand, some silt, trace clay, gray, wet, compact	little to	SS 10	100	3-8-9 (17)			A •		

BORING NUMBER BH-203 PAGE 2 OF 2

1	CLIEN	IT Lu	minant PROJEC	PROJECT NAME Pond Slope Stability								
	PROJ	ECT N	IUMBER 123-94128 PROJEC	PROJECT LOCATION Martin Lake								
	25 DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	20 4 PL 20 4	F N VALU 10 60 MC 10 60 CONTEN 10 60	80 LL 80	
LOPE STABILITY/MARTIN LAKE/LAB TESTING/94128MARTINLAKE.GPJ	40		some clay and silt veins, tan at 38.0'	SS 11	100	3-6-6 (12)						
ITY/MARTIN LAKE/LAB TE	45		(SC) CLAYEY SAND, low plasticity, some silt, tan and brown, wet, compact	SS 12	100	4-8-10 (18)			A			
PE STABIL	- 50		(SM) SILTY SAND, non-plastic, trace clay, tan and gray, wet, dense	SS 13	100	8-14-20 (34)						
3[Bottom of borehole at 50.0 feet.									

GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P^{.,}_2012 PROJECT FOLDERS\123-94128 LUMINANT POND SI

BORING NUMBER BH-204

PAGE 1 OF 2

						PROJECT NAME Pond Slope Stability PROJECT LOCATION Martin Lake								
DR	ILLI	NG C	CONTRACTOR WEST Drilling GRO											
LO	GGE	ED B	METHOD Hollow Stem Auger Y FW CHECKED BY MP	AT END OF DRILLING										
DEPTH		GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	□ FINI	40 L N 40 ES CO	60	80 LL -1 80 T (%) □	
2/94 I ZOIM.	0		removed SANDY GRAVEL from roadbed (CL) SILTY CLAY, low plasticity, some sand, tan and gray,		SH 1	67		4.25		•				
			mottled, dry, hard (CL) LEAN CLAY, low plasticity, some silt, sand, and sand veins red and gray, dry, very stiff	S,	SH 2	50		3.0		 : :				
- 5	- /2 - /2		(SC) CLAYEY SAND, low plasticity, some silt and black sandy gravel veins, tan and gray, dry		SH 3	33		5.0		•				
1 MAKIIN			(CL) SANDY CLAY, low plasticity, little silt, tan and gray, dry, sti	iff	SH 4	58		2.0		•				
			(SC) CLAYEY SAND, non-plastic to low plasticity, little silty clay seam, tan, brown, with little gray, dry		SH 5	44		2.5						
73/123-94 128 LOMINAN I POND 3L	5		(CL) LEAN CLAY, low to medium plasticity, some silt, trace fine sand, tan, brown, and gray, mottled, dry, stiff		SH 6	67		2.0						
2012 PROJECT FOLDER	-) -		some sand, little silt		SH 7	67		1.5						
71-90:01 21/4/21 - 10:03	5		(CL) SANDY CLAY, low plasticity, little silt, tan and gray, moist, very stiff		SH 8	46		3.0						
30 - 30))		(ML) SANDY SILT, low plasticity to non-plastic, fine, subangular some clay, tan and gray, moist, soft	-,	SS 9	100	2-1-3 (4)			A •				
	- - 5		(SM) SILTY SAND, low plasticity to non-plastic, fine, subangular gray with little brown, dense	r,	SS 10	94	11-14-18 (32)	-		•	A			

BORING NUMBER BH-204 PAGE 2 OF 2

CLIENT Luminant PROJECT NAME Pond Slope Stability PROJECT NUMBER 123-94128 PROJECT LOCATION Martin Lake											
GRAPHIC LOG		MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) 20 40 60 80		
40	(SC) CLA' sand, som	YEY SAND, fine, subangular, interbedded with ne clay, tan, wet, compact	gray, silty	SS 11	94	4-5-6 (11)	-		A •		
45	(CH) CLA' stiff	Υ, medium plasticity, little silt, trace fine sand, ς	gray, wet,	SS 12	100	3-5-7 (12)	-		A F• -1		
 50		Bottom of borehole at 50.0 feet.		SH 13	75		2.0		•		

Fax: (281) 821-6870

500 Century Plaza Drive, Suite 190
Houston, Texas 77073
Telephone: (281) 821-6868
Fax: (281) 821-6870

BORING NUMBER BH-205

PAGE 1 OF 2

	CLIEN	NT Lu	minant Pi	PROJECT NAME Pond Slope Stability								
					DJECT LOCATION Martin Lake							
			TED 10/30/12 COMPLETED 10/30/12 G									
					WATER			_				
			IETHOD Hollow Stem Auger	$\overline{igspace}$ AT $\overline{igspace}$	TIME OF	DRILI	LING _29.4	10 ft / E	Elev 30	01.10 ft		
	LOGG	SED B	Y FW CHECKED BY MP	AT	END OF	DRILL	ING					
	NOTE	s			AFTER DRILLING							
KTINLAKE.GPJ	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	☐ FINES CONTENT (%) ☐		
\94128MAF	<u> </u>		(CL) LEAN CLAY, medium plasticity, some silt, trace sand, to and gray, mottled, dry, hard	an	SH 1	50		4.0		20 40 60 80		
3 TESTING			with silty sand seams, very stiff at 2.0'		SH 2	60		3.5		•		
N LAKE\LAE	5		stiff at 4.0'		SH 3	40		1.25				
TYMARTIN			very stiff at 6.0'		SH 4	58		3.75				
E STABILI	 10				SH 5	44		3.5				
JMINANT POND SLOF	 		some to little silt at 13.0'		SH	42		3.0				
LDERS\123-94128 L	15 				6							
._2012 PROJECT FO	 20 		some clayey sand seams, stiff at 18.0'		SH 7	40		1.5				
3.GDT - 12/4/12 15:58 - P	 <u>25</u>		(CL) SILTY CLAY, low plasticity, some sand, dark gray, mois	st, stiff	SH 8	67		1.75		•		
GEOTECH BH PLOTS - GINT STD US LAB. GDT - 12/4/12 15:58 - Pt. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITYMARTIN LAKELAB TESTING/94/128MARTINLAKE. GPJ	30 		(CL) SANDY SILTY CLAY, low plasticity, little clay, light gray ☑ little brown, moist, stiff	with	SS 9	67	2-5-7 (12)					
GEOTECH.	 <u>35</u>		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, m very stiff	oist,	SH 10	60		3.0		•		

BORING NUMBER BH-205

PAGE 2 OF 2

	NT <u>Lur</u> IECT NI		PROJECT NAME Pond Slope Stability PROJECT LOCATION Martin Lake								
ДЕРТН (#)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80			
40		(SC) CLAYEY SAND, interbedded with gray silty SAND, fine, subangular, little clay, compact, wet	SS 11	100	3-6-8 (14)						
45		(SP) SAND, fine, subangular, non-plastic, some clay, little silt, tan and brown, wet, compact	SS 12	100	4-9-12 (21)			A •			
50		medium to fine, tan at 48.0'	SS 13	100	3-6-11 (17)			A •			
55		very loose at 53.0'	SS 14	33							
60	244	Detterm of heavileds at CO O feet									
60		Bottom of borehole at 60.0 feet.									

Fax: (281) 821-6870

500 Century Plaza Drive, Suite 190
Houston, Texas 77073
Telephone: (281) 821-6868
Fax: (281) 821-6870

BORING NUMBER BH-206 PAGE 1 OF 2

	CLIEN	NT Lu	minant PROJE	OJECT NAME Pond Slope Stability									
						Martin Lak							
- 1			TED _10/30/12										
- 1				ND WATER			_						
- 1				AT TIME O	F DRIL	LING _30.2	20 ft / E	Elev 30	00.30 ft				
	LOGG	SED BY											
- 1													
ł				T					▲ SPT N VALUE ▲				
IARTINLAKE.GPJ	O DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	20 40 60 80 PL MC LL 20 40 60 80 FINES CONTENT (%) 20 40 60 80				
G\94128N			(CL) SANDY CLAY, low plasticity, some silt, tan and gray, mottled dry, stiff	SH 1	44		2.25						
B TESTIN			decreased sand content, very stiff at 2.0'	SH 2	67		3.5		→ 1				
N LAKE\LA	5		interbedded with silty clay layers, very stiff at 4.0'	SH 3	50		2.25						
YMARTII			some silty sand veins, very stiff at 6.0'	SH 4	67		3.5		•				
STABILIT				SH 5	52		3.5						
GEOTECH BH PLOTS - GINT STD US LAB GDT - 12/4/12 15:58 - P.\. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/LAB TESTING/94/128/MARTINLAKE.GFJ			trace organics, hard at 13.0'	SH 6	54		4.5						
PROJECT FOLDER	20		with clayey sand veins, hard at 18.0'	SH 7	50		5.0						
GDT - 12/4/12 15:58 - P:_2012	 - 25		some red, moist at 23.0'	SH 8	50		4.5						
PLOTS - GINT STD US LAB.	 30 		(CH) SANDY CLAY, medium to high plasticity, some silt, tan and gray, very stiff	SH 9	52		3.25						
GEOTECH ВН	 35		increased sand and silt content, dark gray, stiff at 33.0'	SH 10	56		1.5						

BORING NUMBER BH-206

PAGE 2 OF 2

	CLIEN	NT <u>Lur</u>	minant PROJE	PROJECT NAME Pond Slope Stability								
	PROJ	ECT N	JMBER <u>123-94128</u> PROJE	PROJECT LOCATION Martin Lake								
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □			
ING/94128MARTINLAKE.GPJ	35 40		(SC) CLAYEY SAND, fine, subangular, low plasticity, some to little silt, gray, tan, and red, mottled, wet, compact		100	5-6-6 (12)			20 40 60 80			
Y/MARTIN LAKE\LAB TES	45		(SM) SILTY SAND, fine, subangular, non-plastic, some clay, wet, loose	SS 12	100	3-4-5 (9)			.			
NT POND SLOPE STABILIT	50		(SP) SAND, medium to fine, trace coarse, poorly graded, subangular, non-plastic, some silt, tan, wet, compact	SS 13	100	2-6-12 (18)						
DERS/123-94128 LUMINA	55		no coarse, trace clay at 53.0'	SS 14	100	5-8-13 (21)						
JECT FOLI	60		dense at 58.0'	SS 15	100	9-18-23 (41)	-					
GEOTIECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 16:58 - FY. ZO12 PROJECT FOLDERS/123-94728 LUMINANT POND SLOPE STABILITYMART IN LAKEL/AB TESTINGG4/128MART INNIG4/128MART			Bottom of borehole at 60.0 feet.									
GEOTECH BH PLOTS - GIN												

Golder Associates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

BORING NUMBER BH-207

PAGE 1 OF 2

CLIENT Luminant PROJECT						CT NAME Pond Slope Stability								
						CT LOCATION Martin Lake								
- 1														
- 1			ONTRACTOR WEST Drilling GROUP				_		_					
- 1				✓ AT TIME OF DRILLING 34.40 ft / Elev 296.10 ft										
				AT END OF DRILLING										
- 1						i								
F				T					•	SPT N	\/ALLI	F A		
	_	ပ		SAMPLE TYPE NUMBER	% <u>≻</u>	ωû	POCKET PEN. (tsf)	UNIT WT.	20		60			
.GPJ	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	E T	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	Sf)	F (5	PI F	_ M	С	LL H		
LAKE		3R/ L		MPI	SE		SZ ±	⊃ઙ ≿		40				
RTIN	0			SA	H		P.	DRY	1	100 SE 40		T (%) □		
28MA	U		remove 8" of SANDY GRAVEL from roadbed	SH					20	40	:	80		
3/941;	_		(CL) SILTY CLAY, low plasticity, trace fine sand, gray, dry, hard	1	1 44		5.0		•					
IN IN	_		(CL) SANDY CLAY, low plasticity, some silt and interbedded sand	SH		1								
316	_		seams, tan and gray, mottled, dry, firm	2			3.0		•			:		
EILA	- 5		(SP) SAND, poorly graded, non-plastic, some silt, clay, and gravel	, SH		1								
FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE\LAB TESTING/94128MARTINLAKE.GPJ	<u> </u>	ISKI	black and tan, dry	3			0.0			:	:			
ARTI III	_		(CL) SANDY CLAY, low plasticity, some silt, gray and tan, dry,	SH		1								
<u>}</u>	_		firm	4	54		3.0		T		- :			
	_		hard at 8.0'	SH		1			1	:	1			
E ST/	10			5	50		5.0		1			1		
ILOPI	10_					1			:		- :			
N N	_										:			
라	-								:	:	:			
A I	_		decrease sand content, stiff at 13.0'	SH					1		- :			
3	- 15			6	56		3.75		T .	- 1	- 1			
34128	15_								:	:	1			
1123-	_										:			
SERS-	_													
FOLI	_		some sand seams at 18.0'	SH		1						:		
ECT	20			7	52		2.5		•					
PRO						1								
2012	_													
<u>a</u>	_													
5:58	_		(SM) SILTY SAND, non-plastic, fine, subangular, little clay, gray,	SH		1						:		
1121	25	344	moist	8	' 33				•					
- 12/4		340												
GDT	_											:		
LAB.	-	(34)												
SD Q	-		(CL) SILTY CLAY, non-plastic, some sand, gray, moist, hard	Sh	1	†								
IT ST	30			9	60		5.0		•					
₽-	JU _					1								
STO	_													
HH	-													
띪	-		(SM) SILTY SAND, non-plastic, fine, subangular, little clay, gray	V ss		6-7-7	1							
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P:_2012 PROJECT	35		∑ with little tan, moist, compact	10		(14)	-		i					

BORING NUMBER BH-207

PAGE 2 OF 2

Golder Associates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

BORING NUMBER BH-208

PAGE 1 OF 2

- 11	CLIEN	NT Lu	minant PROJEC	PROJECT NAME Pond Slope Stability										
- 1				PROJECT LOCATION Martin Lake										
- -	DATE	STAR	TED 10/31/12 COMPLETED 10/31/12 GROUN											
- 1	DRILI	LING C	ONTRACTOR WEST Drilling GROUN											
ŀ	DRILI	LING M	ETHOD Hollow Stem Auger	$\sqrt{2}$ AT TIME OF DRILLING $20.00 \mathrm{ft}$ / Elev $300.50 \mathrm{ft}$										
	LOGO	GED BY	Y FW CHECKED BY MP A	AT END OF DRILLING AFTER DRILLING										
	NOTE	ES	A											
	I	<u></u>		IYPE ER	۲۲ %)	/ FS JE)	PEN.	UNIT WT. (pcf)	▲ SPT N VALUE ▲ 20 40 60 80					
OLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKELAB TESTING/94128MARTINLAKE.GPJ	O DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT (pcf)	PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80					
128M/		000	remove 12" of SANDY GRAVEL from roadbed	SH	44		3.5		20 40 00 00					
NG/94	_		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, dry, stiff	1	44		3.5							
AB TESTI	-		stiff to very stiff at 2.0'	SH 2	50		4.0		•					
N LAKE\L	5		hard at 4.0'	SH 3	54		5.0		•					
TYMART	-		SILTY SAND, nonplastic, some clay, dry	SH 4	31		1.5		•					
STABILI	10		(CL) SANDY CLAY, low plasticity, some silt, tan, gray, and red, dry, soft to firm	SH 5	50		2.0		• •					
ND SLOPE	-													
NANT POI	-													
128 LUMII	15			SH 6	40		2.5							
RS\123-94	-													
	-		very stiff at 18.0'	SH 7	50		3.5							
2 PROJEC	20													
3 - P:_201	-													
4/12 15:58	25		hard at 23.0'	SH 8	46		5.0		•					
.GDT - 12/	_													
D US LAB	-		some sand seams, moist, very stiff at 28.0'	SH										
- GINT ST	30		$ar{ar{ abla}}$	9	54		3.0							
HPLOTS	-													
GEOTECH BH PLOTS - GINT STD US LAB.GDT - 12/4/12 15:58 - P.\. 2012 PROJECT F	- 35		(SC) CLAYEY SAND, fine, subangular, some silt, tan, gray, and red, moist	SH 10	60		2.5		•					

BORING NUMBER BH-208

PAGE 2 OF 2

CLIENT Luminant PROJECT NAME Pond Slope Stability PROJECT NUMBER 123-94128 **PROJECT LOCATION** Martin Lake ▲ SPT N VALUE ▲ SAMPLE TYPE NUMBER POCKET PEN. (tsf) ' UNIT WT. (pcf) GRAPHIC LOG RECOVERY 9 (RQD) BLOW COUNTS (N VALUE) 40 60 DEPTH (ft) LL 1 80 MATERIAL DESCRIPTION 40 60 20 DRYI ☐ FINES CONTENT (%) ☐ 35 40 60 GEOTECH BH PLOTS - GINT STD US LAB, GDT - 12/4/12 15:58 - P.\. 2012 PROJECT FOLDERS/123-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKELAB TESTING/94/128MARTINLAKE.GPJ wet at 38.0' SH 50 11 40 loose at 43.0' SS 3-2-3 100 12 (5) 45 (SP) SAND, fine, little medium, non-plastic, subangular, little clay, SS 1-6-8 72 tan, compact 13 (14)50 SS 3-6-7 100 (13)(SC) CLAYEY SAND, medium, some silt, brown 55 (SM) SILTY SAND, fine, subangular, non-plastic, little clay, gray, compact SS 15 7-43-50 (CL) SILTY CLAY, low plasticity, dark gray, dense 100 (93)SANDY GRAVEL, non-plastic, planar, lignite coal seam, black, hard Bottom of borehole at 60.0 feet.

BORING NUMBER BH-209 PAGE 1 OF 2

CLII	ENT Lu	minant PRO	JECT NAI	ME Poi	nd Slope Sta	ability							
			PROJECT LOCATION Martin Lake										
			GROUND ELEVATION 360 ft HOLE SIZE 8 inches										
1													
1		Y _FW CHECKED BY _MP			LLING								
NO	ES		AFTER DRILLING										
			出	%		z	DRY UNIT WT. (pcf)	▲ SPT N VALUE ▲					
	GRAPHIC LOG	MATERIAL RECORDING	SAMPLE TYPE	RECOVERY	NTS LUE	POCKET PEN. (tsf)	 	20 PL		80 LL			
DEPTH	LO RAP	MATERIAL DESCRIPTION	IPLE		BLOW COUNTS (N VALUE	유한	158	20	40 60	80			
	9		SAN	REC .	02	PO	R	☐ FINES	S CONTEN	T (%) 🗆			
0	7.7.7	(SC) CLAYEY SAND, fine, subangular, medium plasticity, some	e la .					20	40 60	80			
-	-///	fine rounded gravel, red and brown, dry	3	SH 33 1		5.0		•					
-	-///	trace fine rounded gravel, tan and gray, mottled at 2.0'											
-	1//	, J,		SH 2 38		5.0		•					
5	-7//	little silt, no gravel at 4.0'	c	SH an									
3				38	>	5.0		•	- 				
}		some silt at 6.0'		SH 20				· · · · · · · · · · · · · · · · · · ·					
-				4 29		4.5		•					
<u>-</u>		(CL) SANDY CLAY, low plasticity, some silt, tan and gray, dry,		SS 33	2-2-5	1		A •					
10		firm		5 33	(7)	_		:		: I			
								:					
								:		:			
								:		:			
		some red, hard at 13.0'	5	SH 21		5.0		:		:			
]]] 15				6 21		5.0		_ :					
								:					
								:					
<u>}</u>		gray, moist, very stiff at 18.0'		SH 29		2.5							
20				7 29									
<u>-</u>	- 4////												
-													
<u>-</u>		(CL) LEAN CLAY, low plasticity, some silt, trace fine sand, gray	, , ,			-							
<u>-</u>	-4////	and tan, moist, stiff		SS 67	4-6-8 (14)								
25	-\////		<u> </u>	-	(17)	-							
<u>-</u>	-\////							:					
<u> </u>	<i>\\\\\\\</i>							:					
<u>-</u>	-\\\\\\	little silt, hard, gray at 28.0'											
<u>+</u>	-\\\\\\			SH 50		5.0			- 				
30	- \////							<u>-</u>					
2	-\////									:			
=	<i>\\\\\\\</i>												
<u>:</u> -		grading to clayey sand, very stiff at 33.0'		SH 40									
5 35	*/////			10 42	!	3.0							
<u> </u>	<i>Y//////</i>							_					

BORING NUMBER BH-209 PAGE 2 OF 2

	uminant NUMBER 123-94128	PROJECT NAME _Pond Slope Stability PROJECT LOCATION _Martin Lake								
GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) 20 40 60 80			
40	some silt and sand, gray, tan, and brown, hard at 38.0'	SS 11	100	7-13-14 (27)	-					
45	(CL) SILTY CLAY, low plasticity, dark gray, moist, hard	SS 12	100	12-20-26 (46)			• •			
50	(SM) SILTY SAND, fine, subangular, non-plastic, some and gray, moist, very dense	clay, tan SS 13	100	14-27-36 (63)			•			

BORING NUMBER BH-210 PAGE 1 OF 2

- 1													
- 1													
- 1				GROUND ELEVATION 360 ft HOLE SIZE 8 inches									
			ONTRACTOR WEST Drilling IETHOD Hollow Stem Auger										
- 1			/ FW CHECKED BY MP										
-					111					▲ SE	PT N VALU	JF 🛦	
	(#)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	20 PL 	40 60 MC 40 60 S CONTEN	80 LL I 80 IT (%) □	
- ANA	0	7.7.7	(SC) CLAYEY SAND, fine, subangular, some silt, little fine	<u> </u>	SH					20	40 60	:	
- 18412	-		rounded gravel, red, dry trace roots at 1.0'		1	25		5.0		•			
B LESTING	-		tan, gray, and red, mottled at 2.0'		SH 2	21		5.0		•			
AKEILA	5		compact at 4.0'		SS 3	67	4-7-10 (17)			•			
	-				√ ss		3-6-6						
- NA	-				4	39	(12)						
	-				√ ss	33	3-4-6			A.			
<u>}</u>	- 10				<u> </u>	33	(10)	-					
S S C										1		:	
	_												
AN -	_		(CL) SANDY CLAY, low to medium plasticity, little silt, red	and									
	-		gray, dry, very stiff	anu	SH 6	21		3.0					
94128	15 _									:		:	
-52172	-												
2 2 2										:			
2	_		some silt and sand seams, gray and tan, moist, very stiff a	it 18.0'	SH 7	89		3.5		⊢ •	1		
	20_				•								
12 P	-												
	-												
5:58	-		little red, hard at 23.0'		SH								
71/4	- 25				8	50		4.5					
721 - 12										:			
- B.GD	_												
S -	-		trops subrounded fine grovels and source and at 00 0										
	-		trace subrounded fine gravels and coarse sand at 28.0'		SH 9	29		4.0					
	30 _												
<u>n</u> –	-												
ͳ	-									:			
	-	////	(SC) CLAYEY SAND, fine, subangular, some silt, brown a	nd tan,	SH	25		4.0					
] [_3	- 35		moist		10	35		4.0					

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

BORING NUMBER BH-210

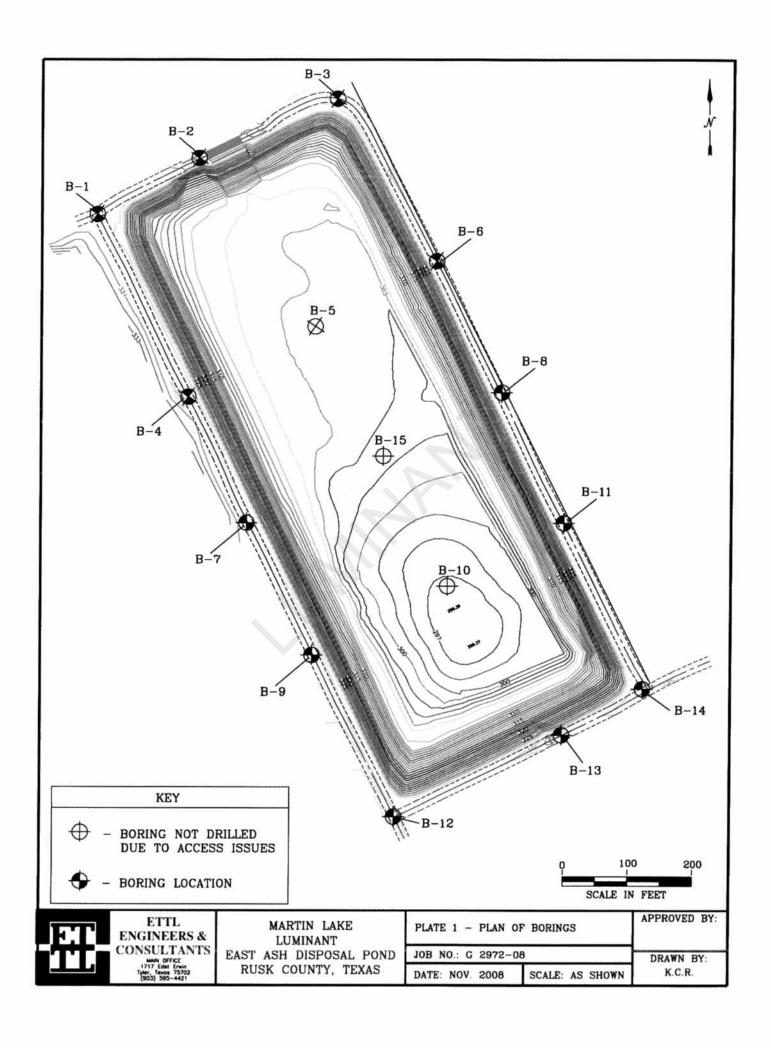
PAGE 2 OF 2

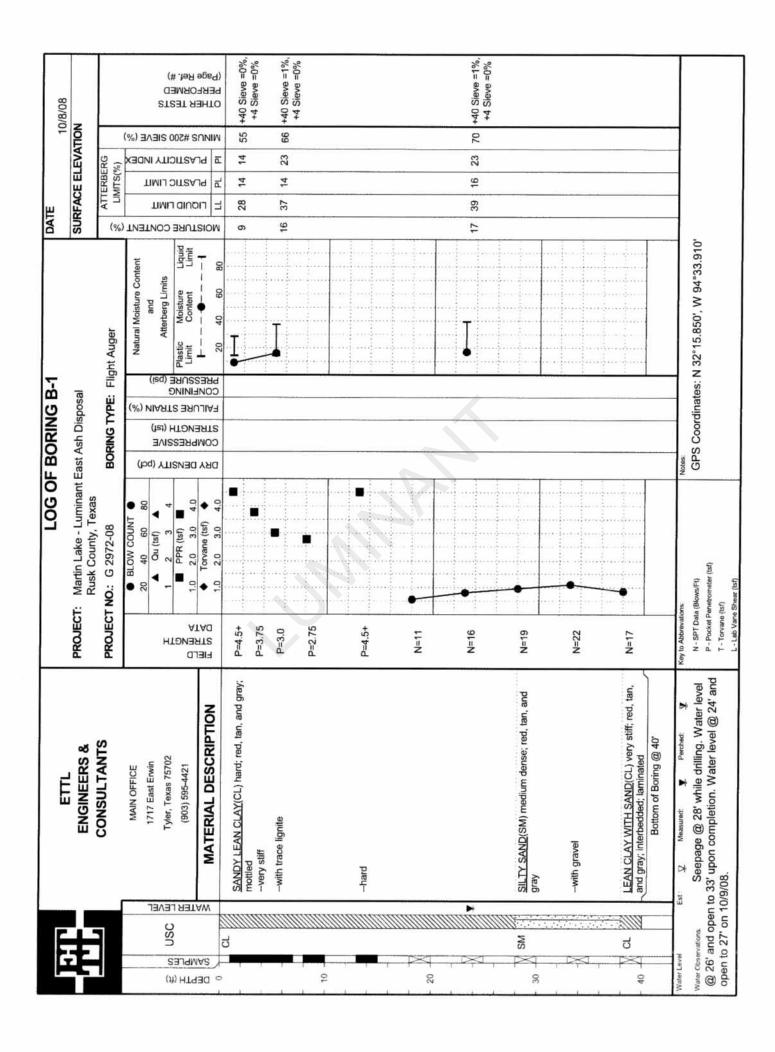
CLIENT _Luminant			PROJECT NAME Pond Slope Stability							
PROJECT NUMBER 123-94128			PROJECT LOCATION Martin Lake							
HT(#)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80		
40		(SM) SILTY SAND, fine, subangular, non-plastic, little clay, dark gray, moist, compact	SS 11	50	4-5-5 (10)	_		A 0		
45		(CL) SILTY CLAY, low plasticity, little fine sand, gray, moist, stiff $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	SS 12	94	2-4-5 (9)	_		A •		
50		(SM) SILTY SAND, fine, subangular, non-plastic, some clay, gra and tan, mottled, wet, compact	y SS 13	100	4-7-8 (15)	_		A 10		
55			SS 14	89	5-9-9 (18)	_		. •		
60		little tan, dense at 58.0'	SS 15	100	7-14-17 (31)	_		•		
65			SS 16	100	11-15-19 (34)			•		
70		some dark brown clay seams at 68.0' Bottom of borehole at 70.0 feet.	SS 17	100	10-15-25 (40)			• •		

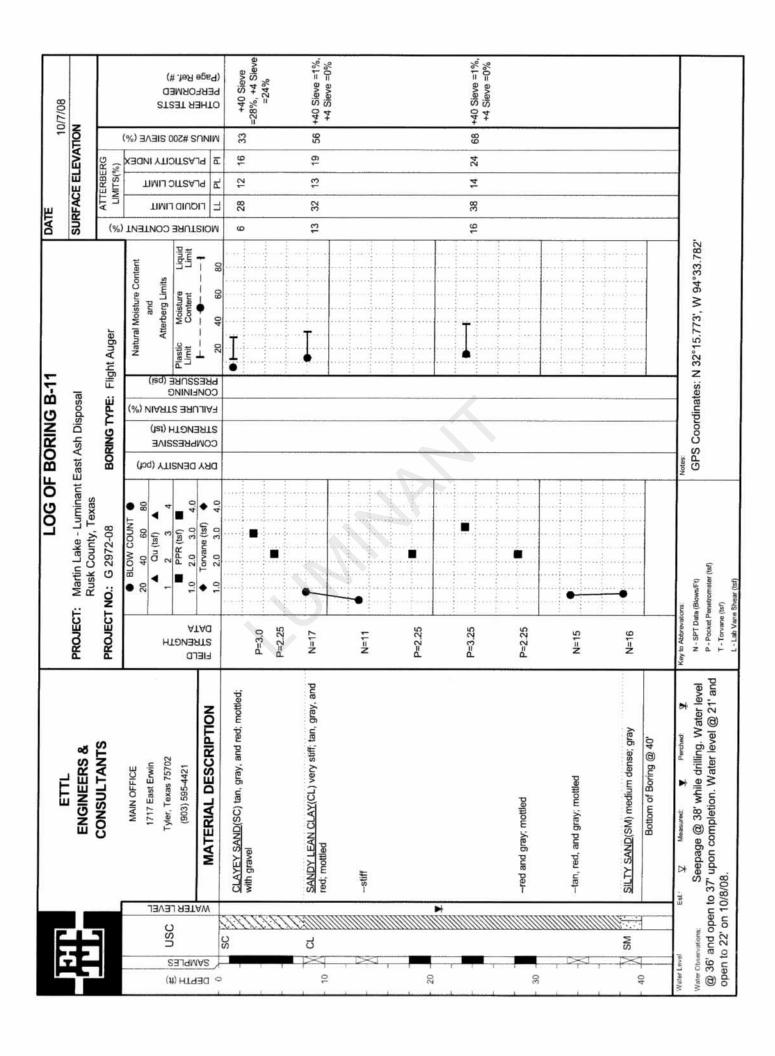
Golder Sociates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

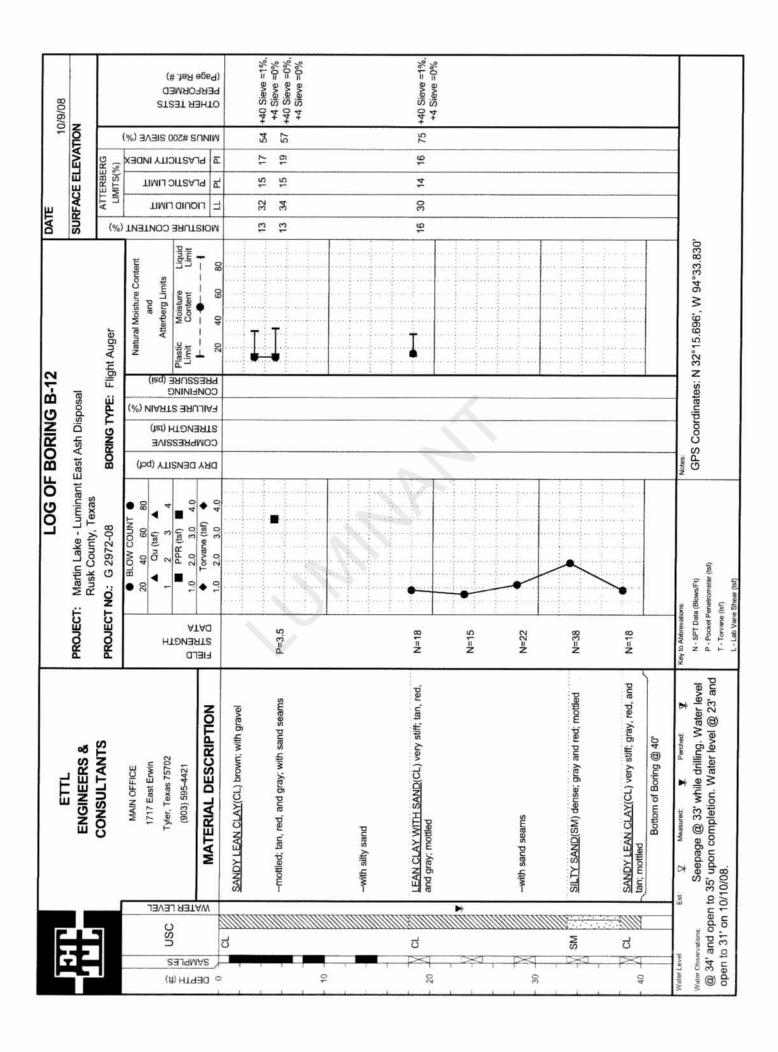
BORING NUMBER BH-211 PAGE 1 OF 2

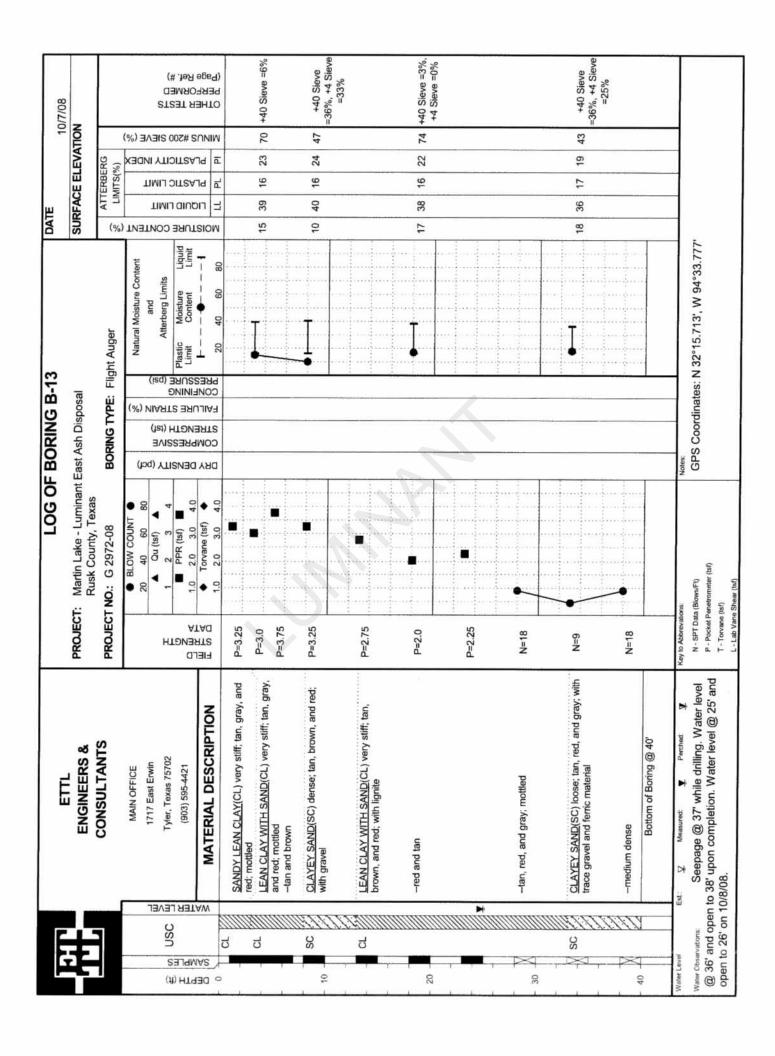
1			ROJECT NAME	Pond	l Slope Sta	bility								
PROJECT NUMBER 123-94128			PROJECT LOCATION Martin Lake											
	DATE STARTED 11/2/12 COMPLETED 11/2/12			GROUND ELEVATION 360 ft HOLE SIZE 8 inches										
1	DRILLING CONTRACTOR WEST Drilling DRILLING METHOD Hollow Stem Auger LOGGED BY FW CHECKED BY MP			AT TIME OF DRILLING 60.20 ft / Elev 299.80 ft no reading, cave in at at END OF DRILLING										
1														
NOTE	ES		AFTER DR	ILLING										
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	20 PL F 20 □ FINE		60 : LI 60	80 L 80			
0	77.7	(SC) CLAYEY SAND, some silt and fine rounded gravel, red	dny					20	40	60	80			
-		(00) 00 (12) 0/110, some six and time rounded graves, rea	, ury SH 1	29		5.0		••••	: :	:				
 		fine, subangular, gray, tan, and red at 2.0'	SH 2	29		3.5					-			
5		trace fine gravels and coarse sand, loose at 4.0'	SS 3	50	2-3-6 (9)			A •						
		some sandy clay seams, compact at 6.0'	SS 4	39	4-5-8 (13)			_ :			1			
		increase clay and silt content at 8.0'	SS 5	72	4-8-8 (16)			:		:	1			
10		(CL-CH) SANDY CLAY, low to medium plasticity, little silt, gr	ray, V ss		2-5-6									
15		tan, and red, dry, stiff	6	33	(11)	_								
20		some silt at 18.0'	SH 7	50		3.25		•						
		brown and tan at 23.0'	SH 8	44		5.0								
5 25 		(ML) SANDY SILT, little clay, tan, moist												
30		(ME) SANDT SILT, IIIIE GAY, IAH, HIGISI	SH 9	25										
35		(SM) SILTY SAND, fine, subangular, some clay, tan and gradense	y, SS 10	67	7-15-19 (34)			•	.					

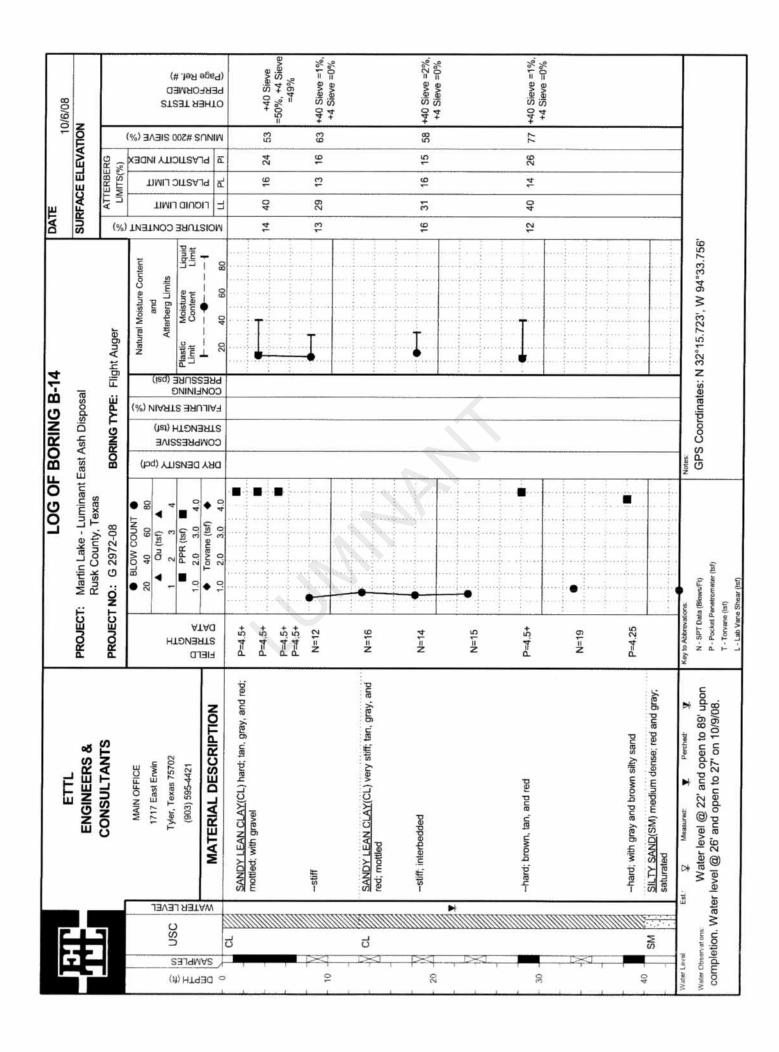


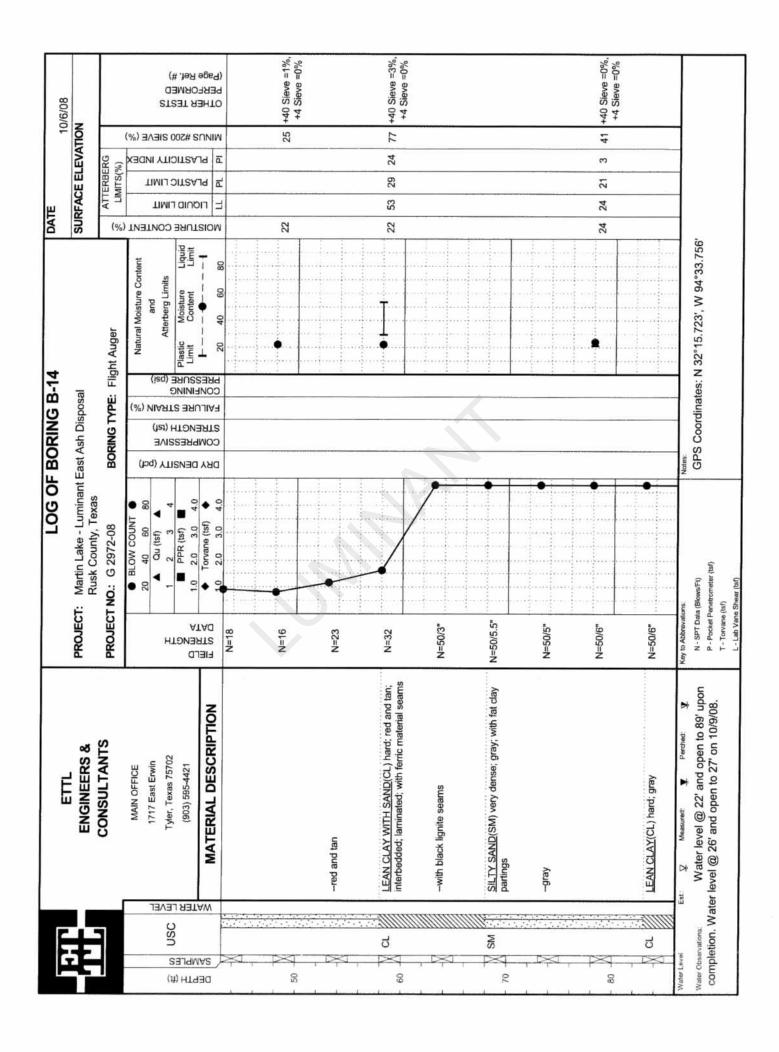

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

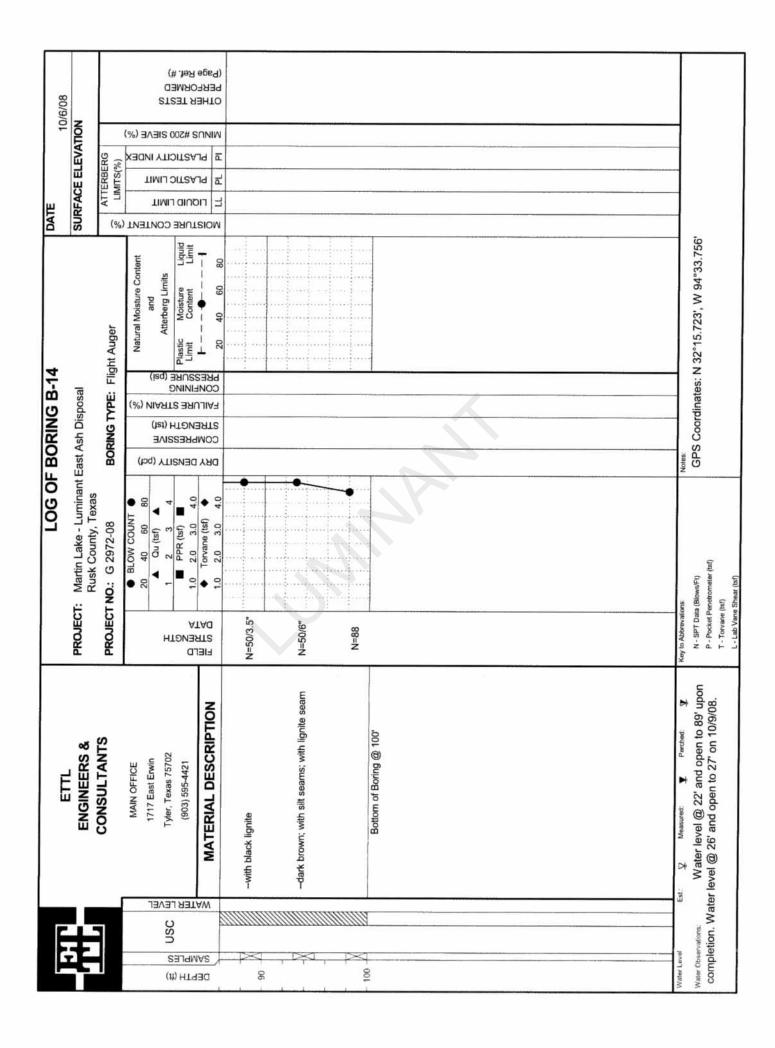

BORING NUMBER BH-211

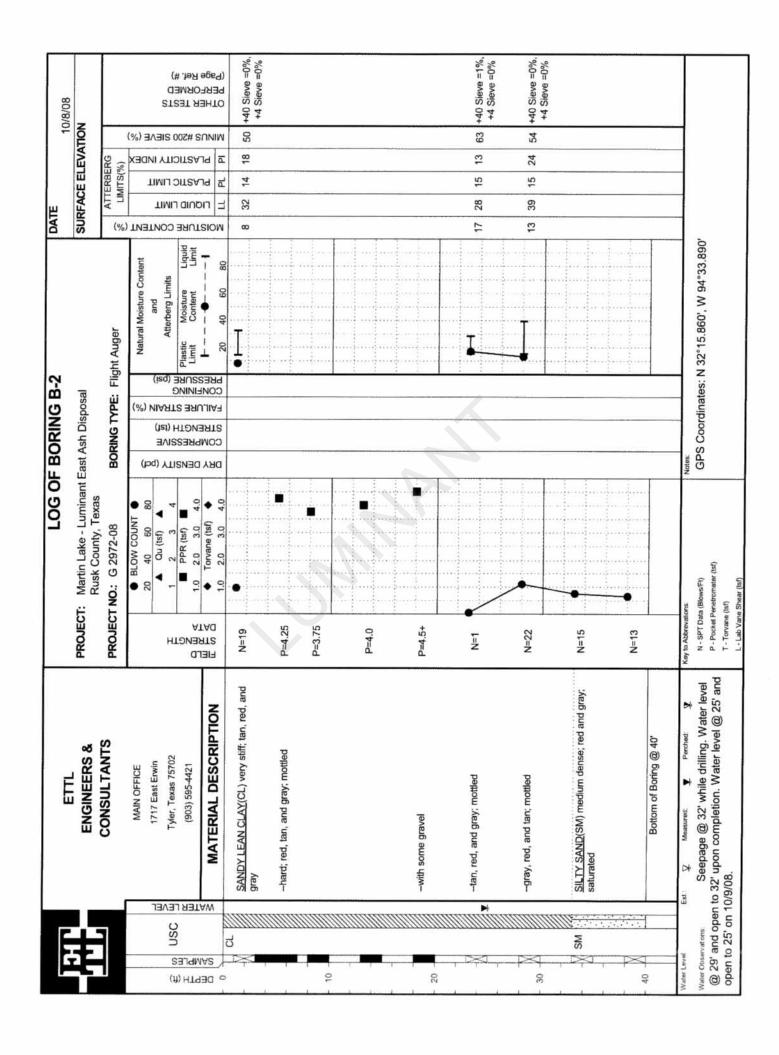

PAGE 2 OF 2

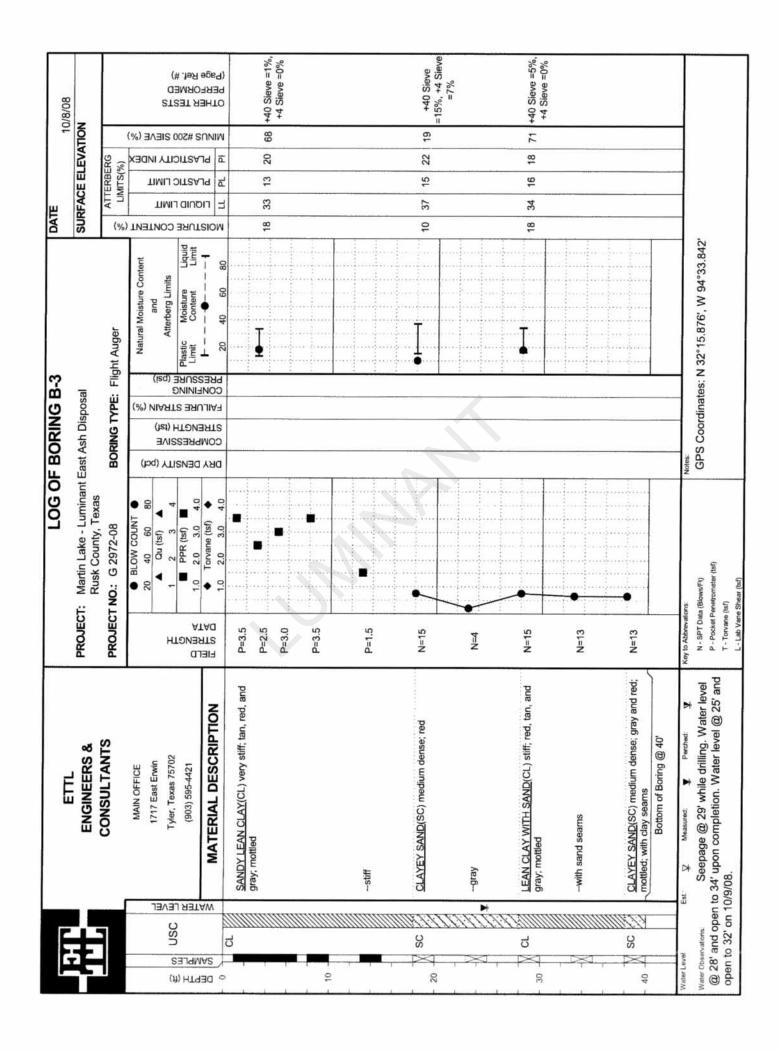

CLIENT Lur	ROJECT NAME Pond Slope Stability ROJECT LOCATION Martin Lake							
95 DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	A SPT N VALUE A 20 40 60 80 PL MC LL 20 40 60 80 □ FINES CONTENT (%) □ 20 40 60 80	
40		SS 11	89	9-17-25 (42)	-		•	
45		SS 12	100	10-14-18 (32)	_		•	
50	(SC) CLAYEY SAND, low plasticity, fine, subangular, some silt and lean clay, gray and tan, wet, dense	SS 13	89	9-14-18 (32)	-		• •	
55	(SP) SAND, fine, subangular, non-plastic, some silt, little to trac clay, tan, wet, very dense	e SS 14	100	17-29-38 (67)			• •	
60	little medium at 58.0'	SS 15	78	14-28-33 (61)	-			
65		SS 16	100	17-29-34 (63)	-		•	
70	(SM) SILTY SAND, fine, subangular, non-plastic, little to trace clay, gray and tan, wet, very dense Bottom of borehole at 70.0 feet.	SS 17	72	18-27-37 (64)			 ♠	

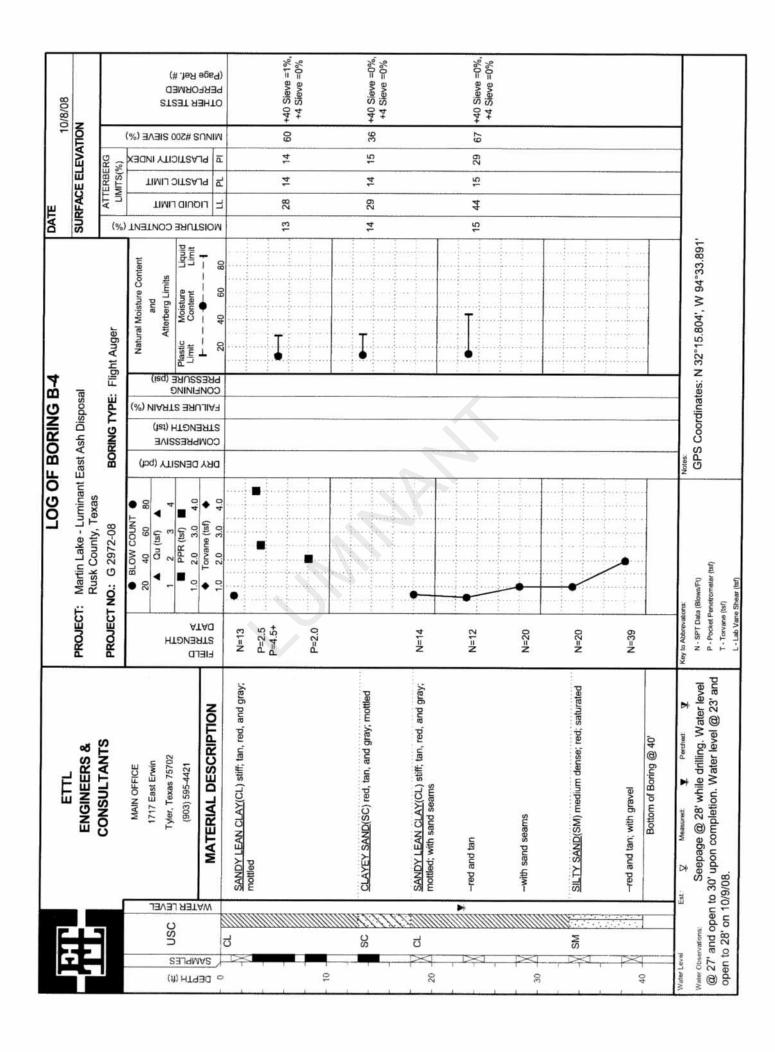


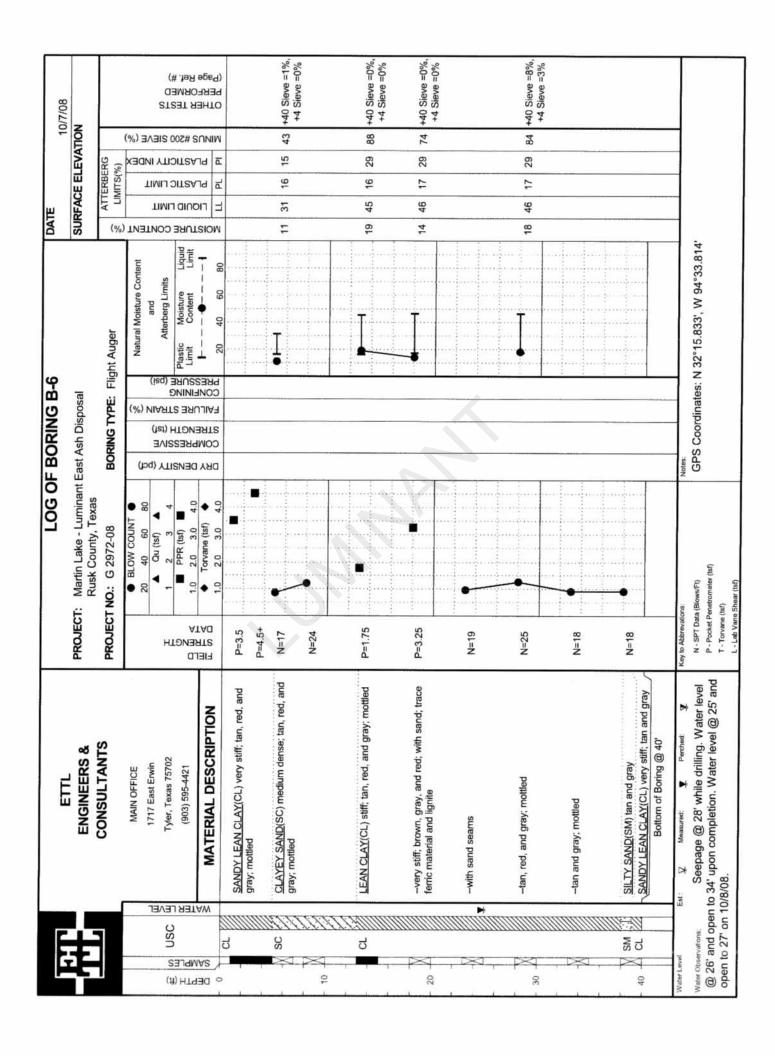


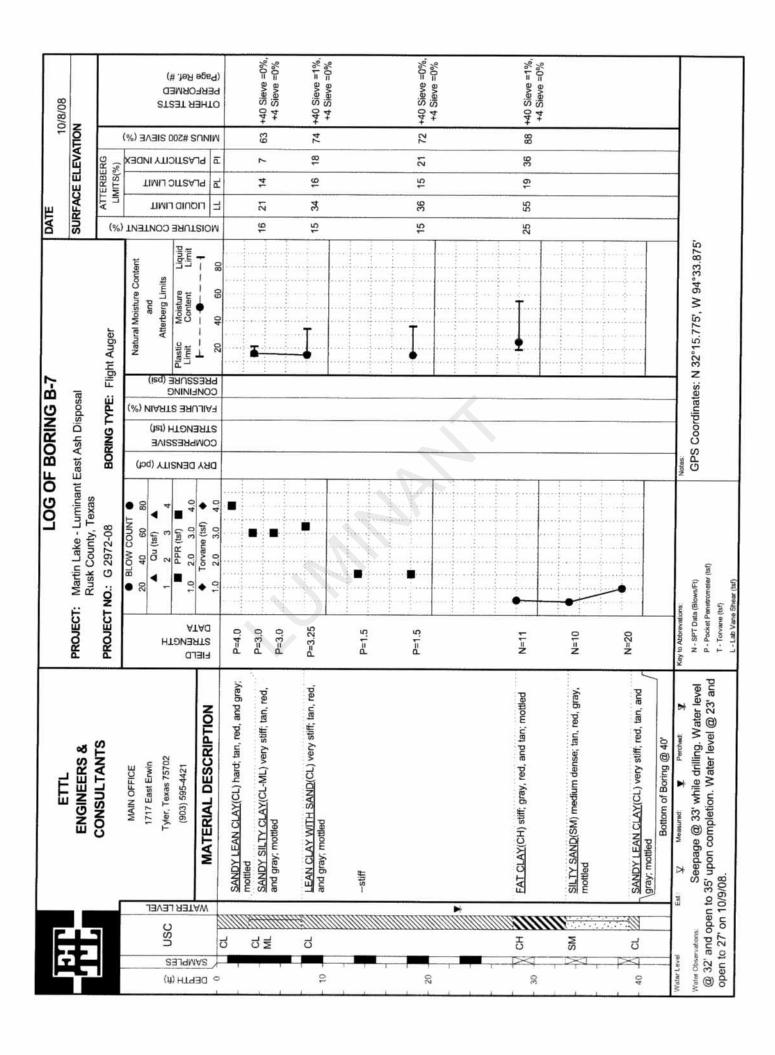


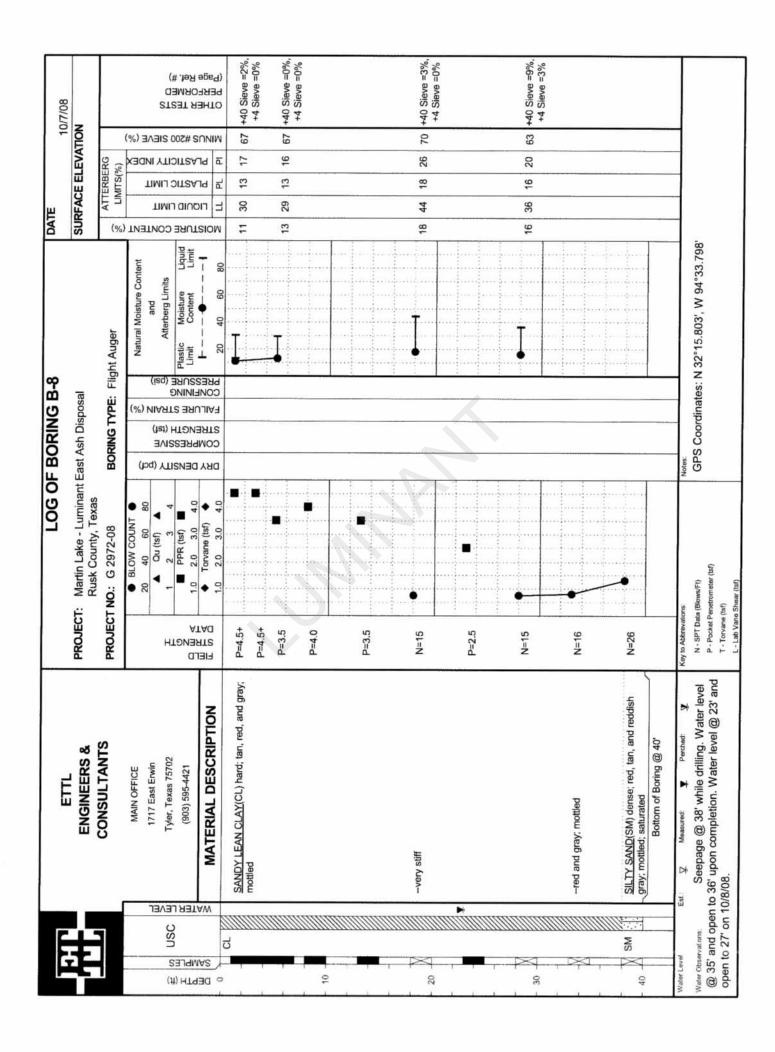


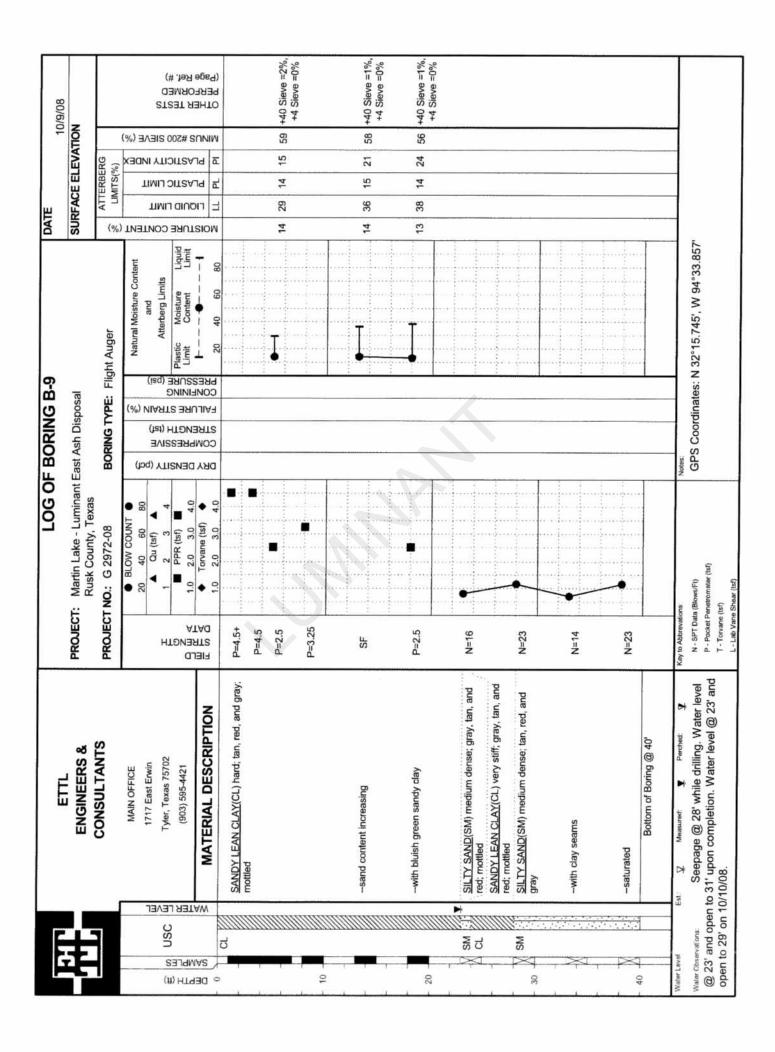


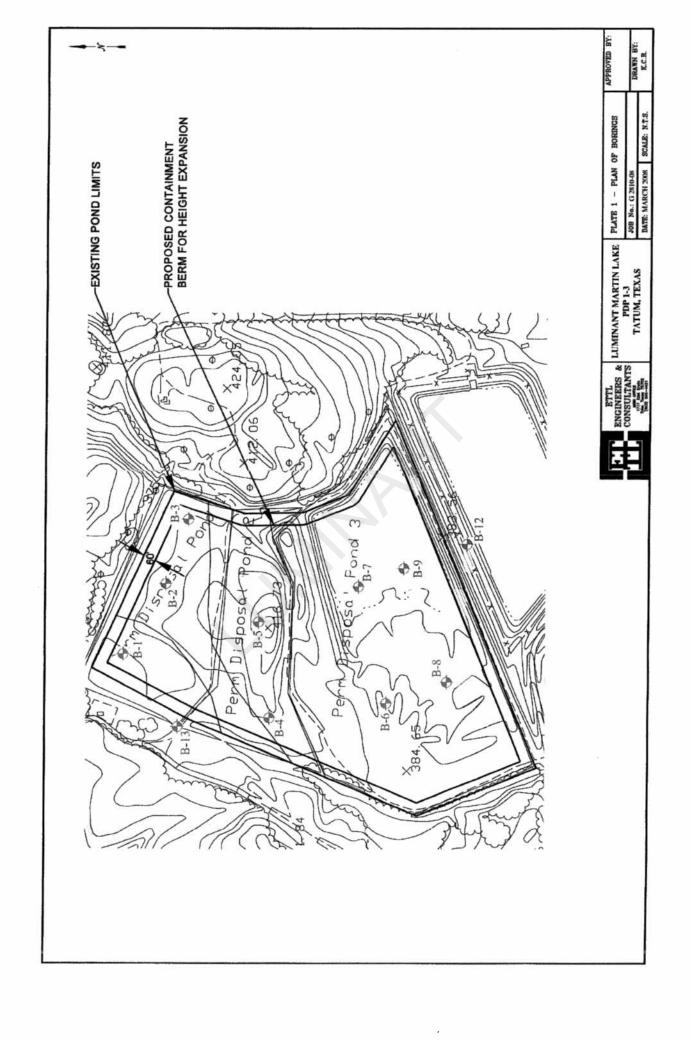


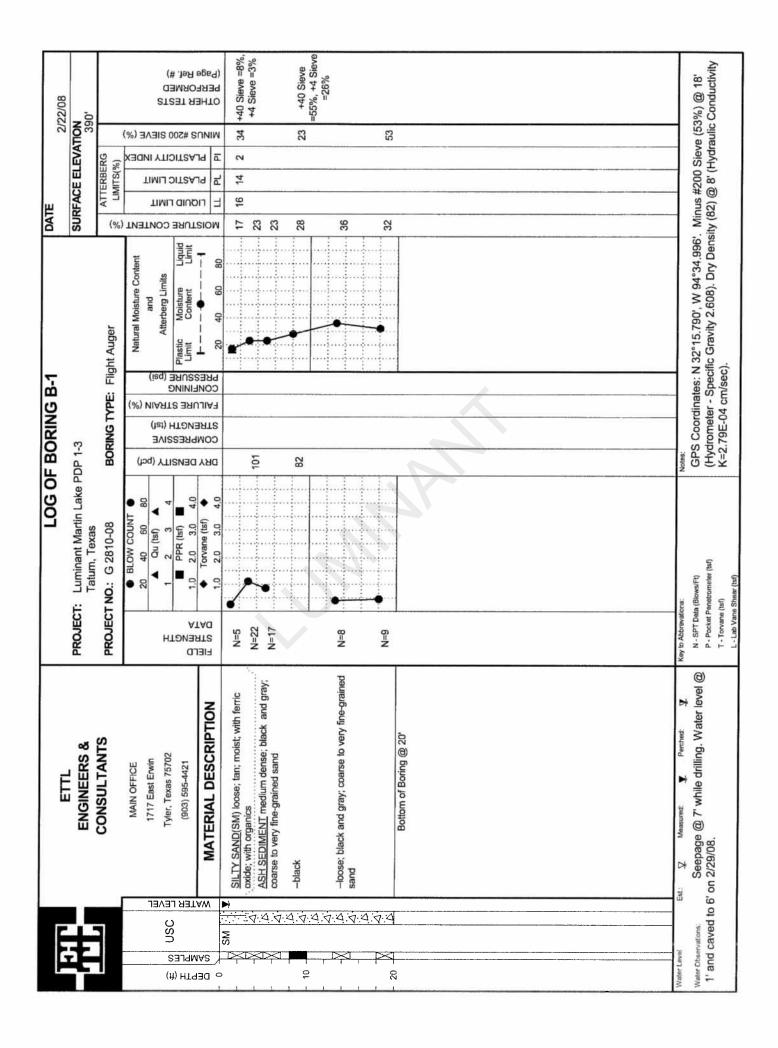




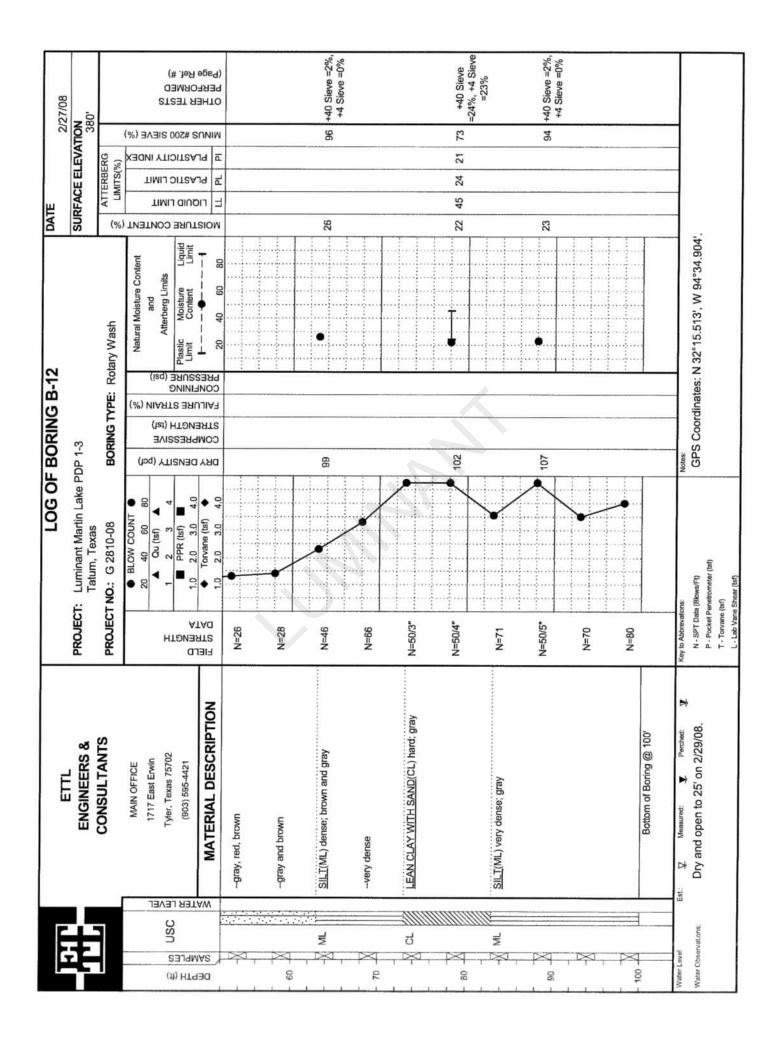


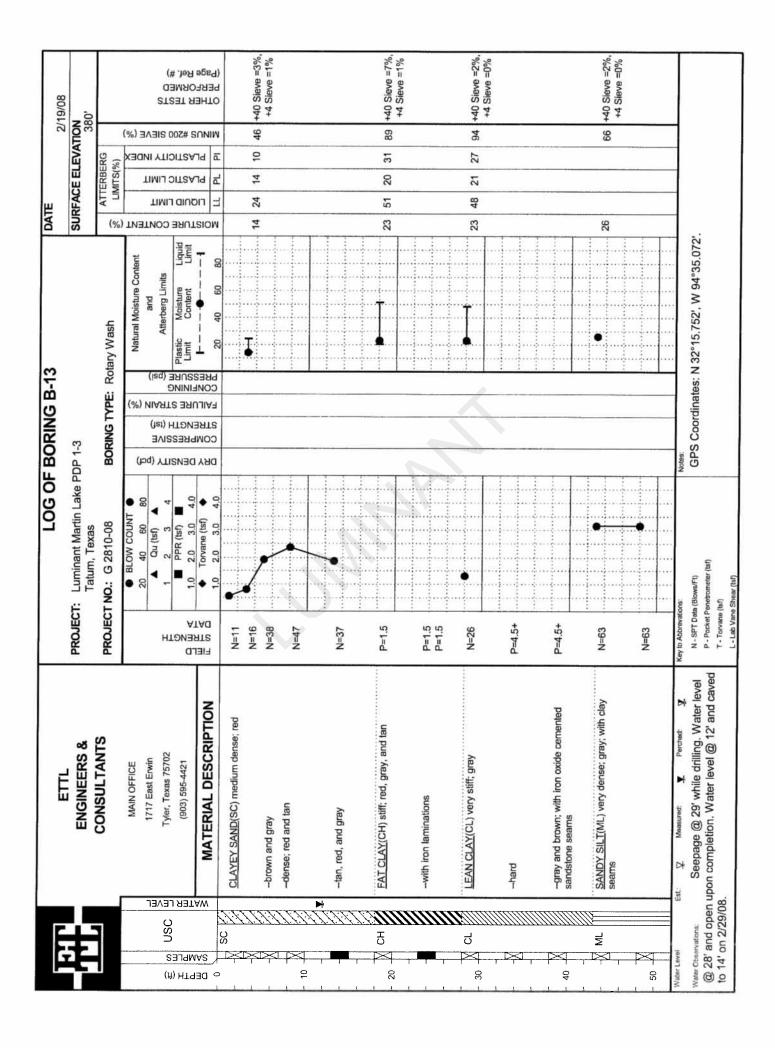


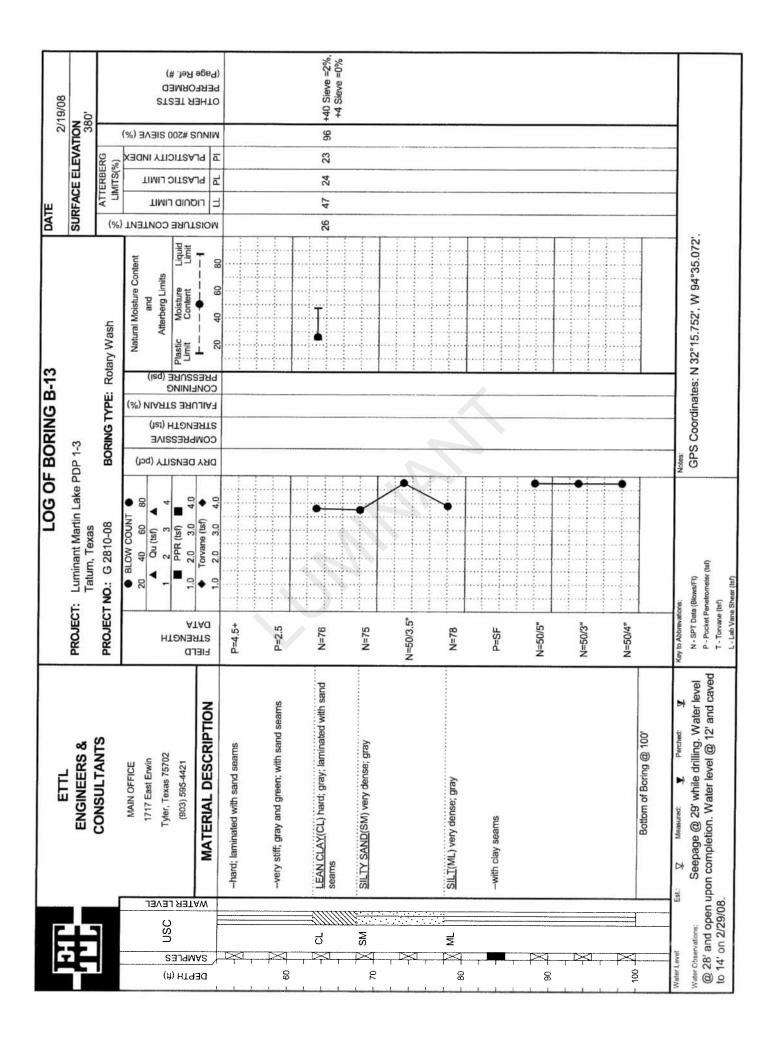


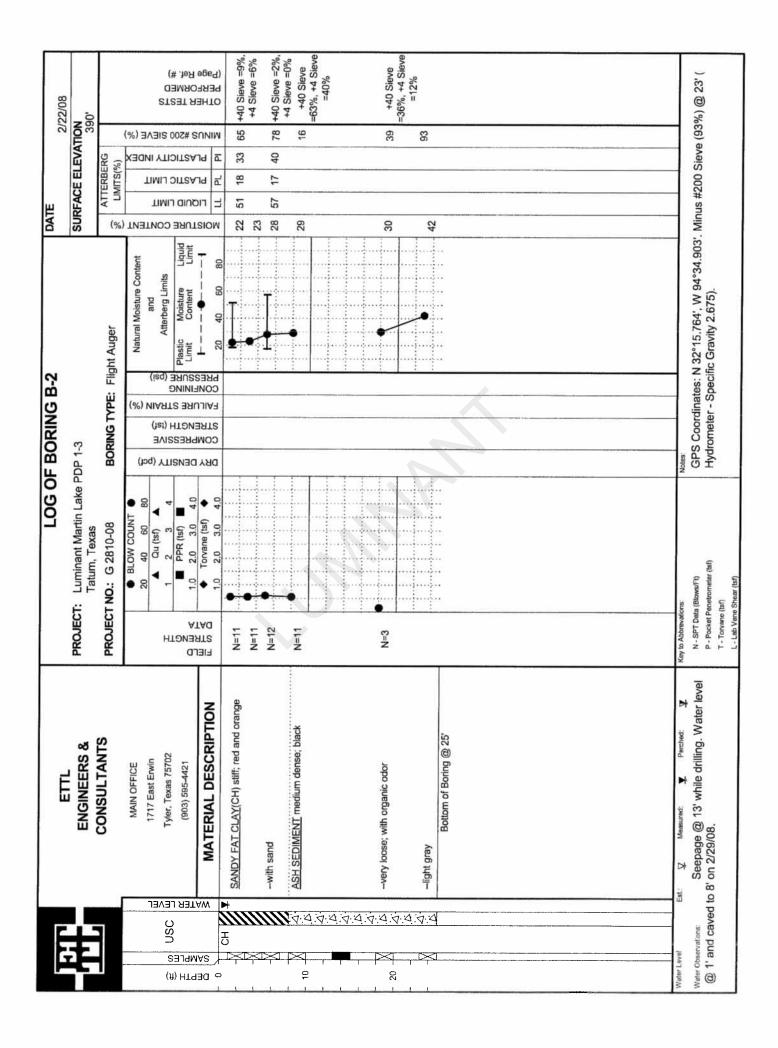


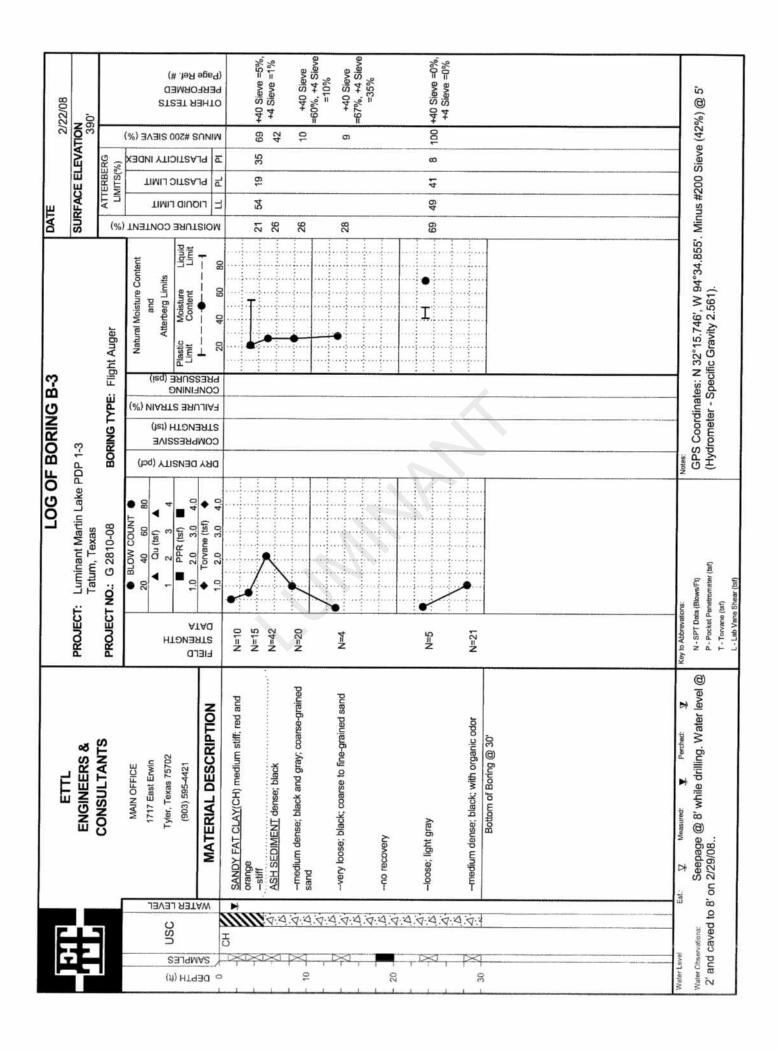


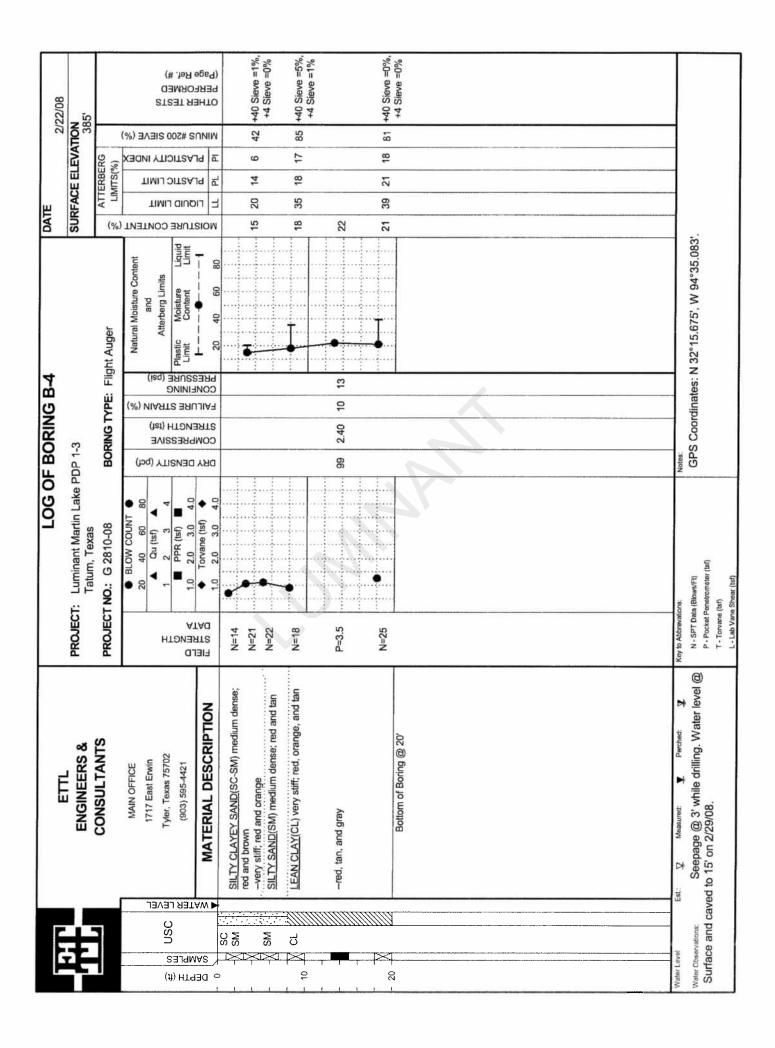


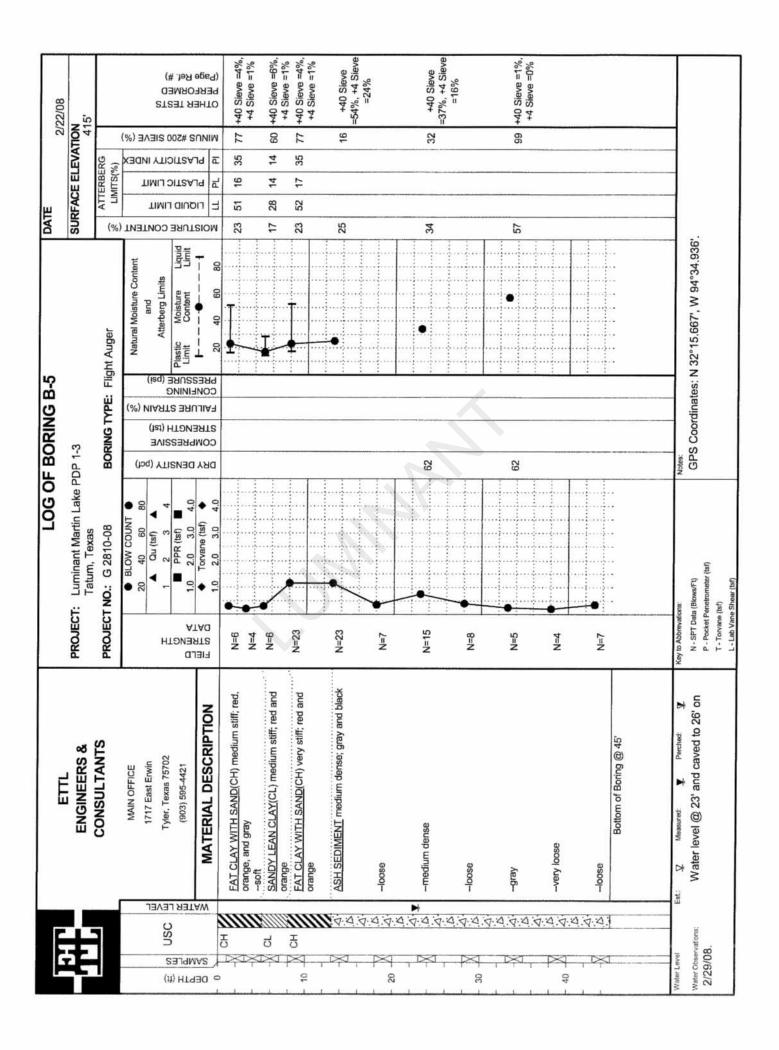

PERMANENT DISPOSAL POND - 5

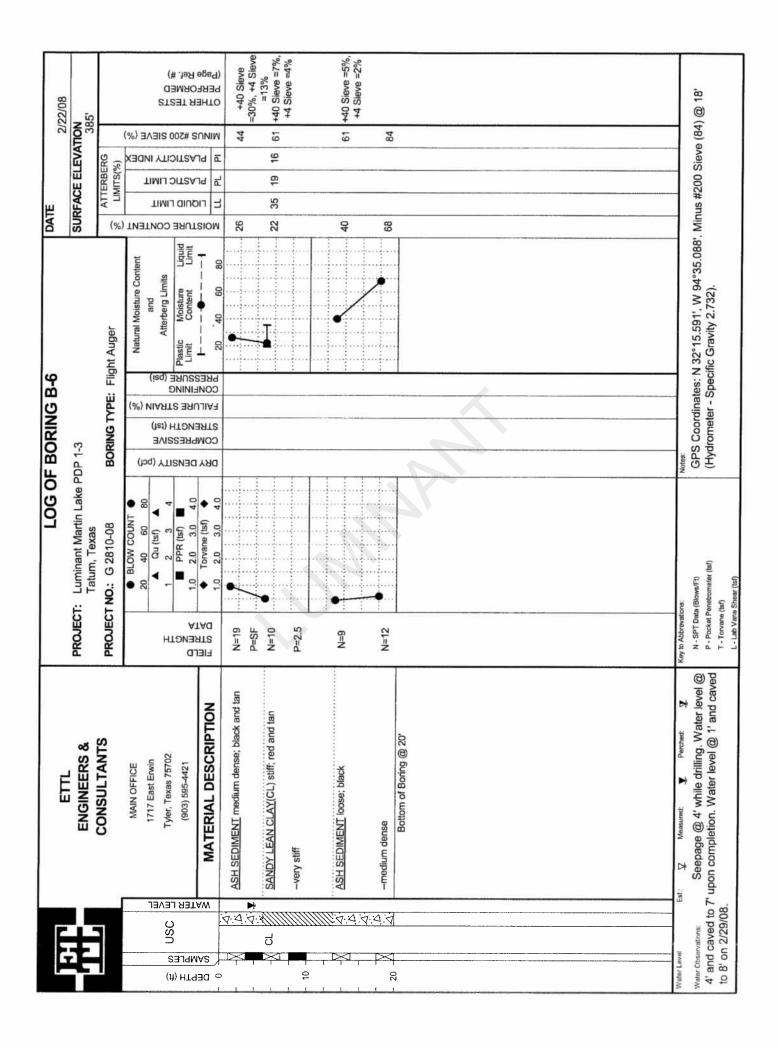


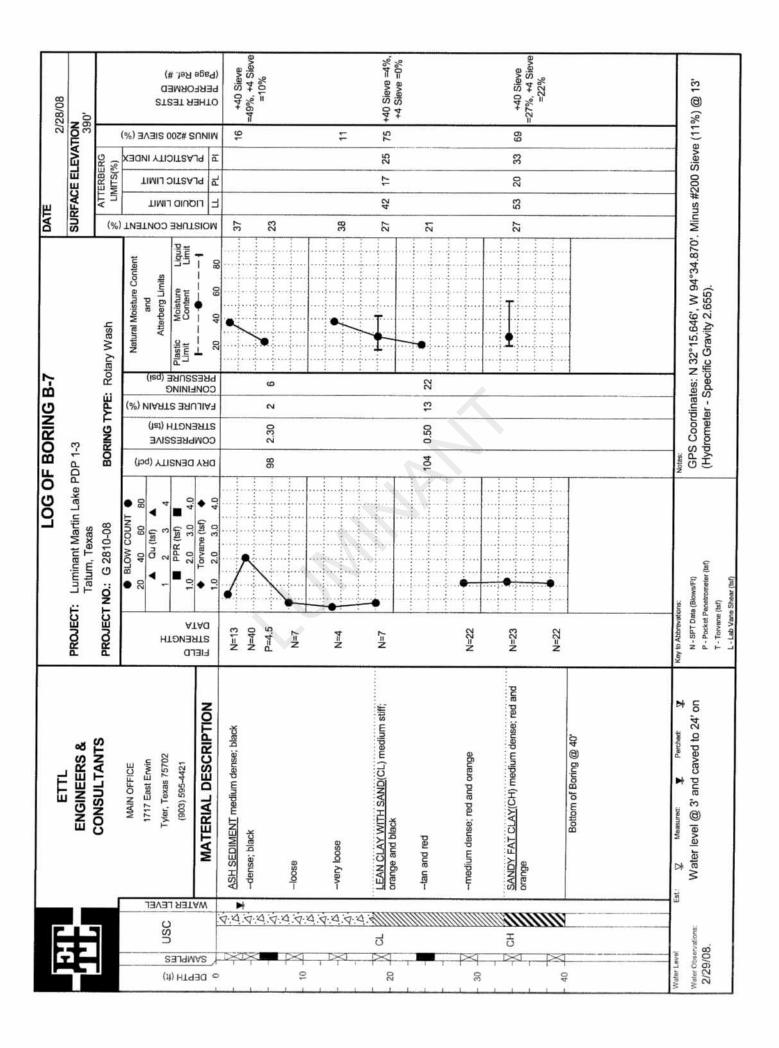


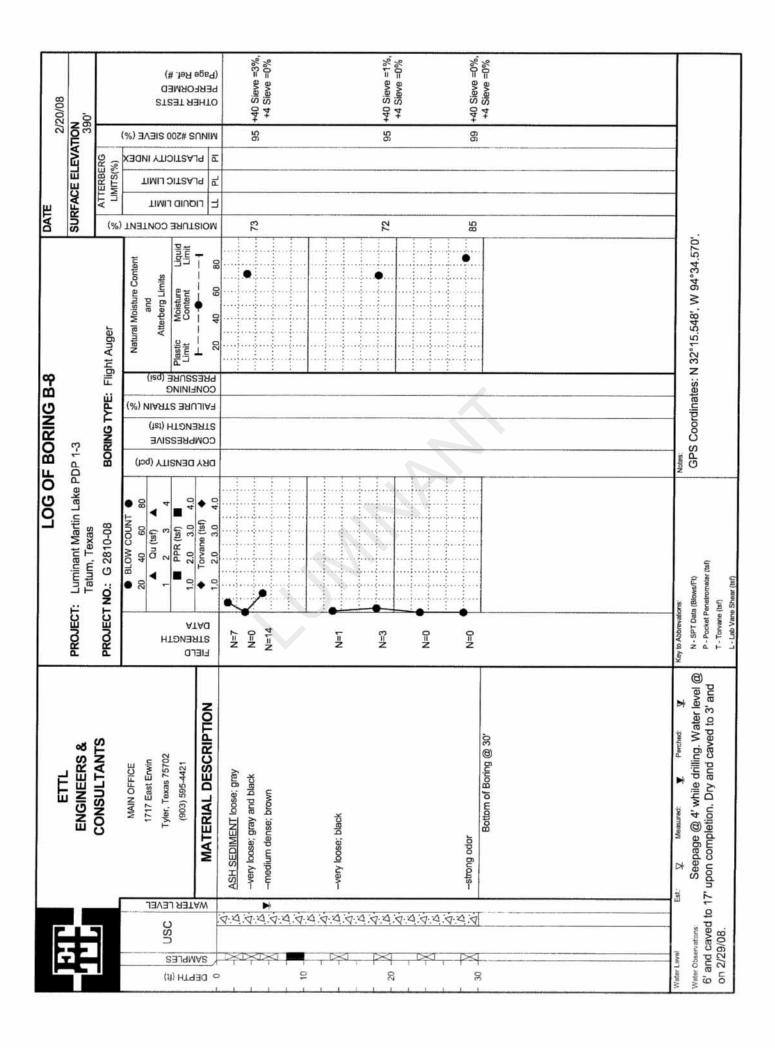


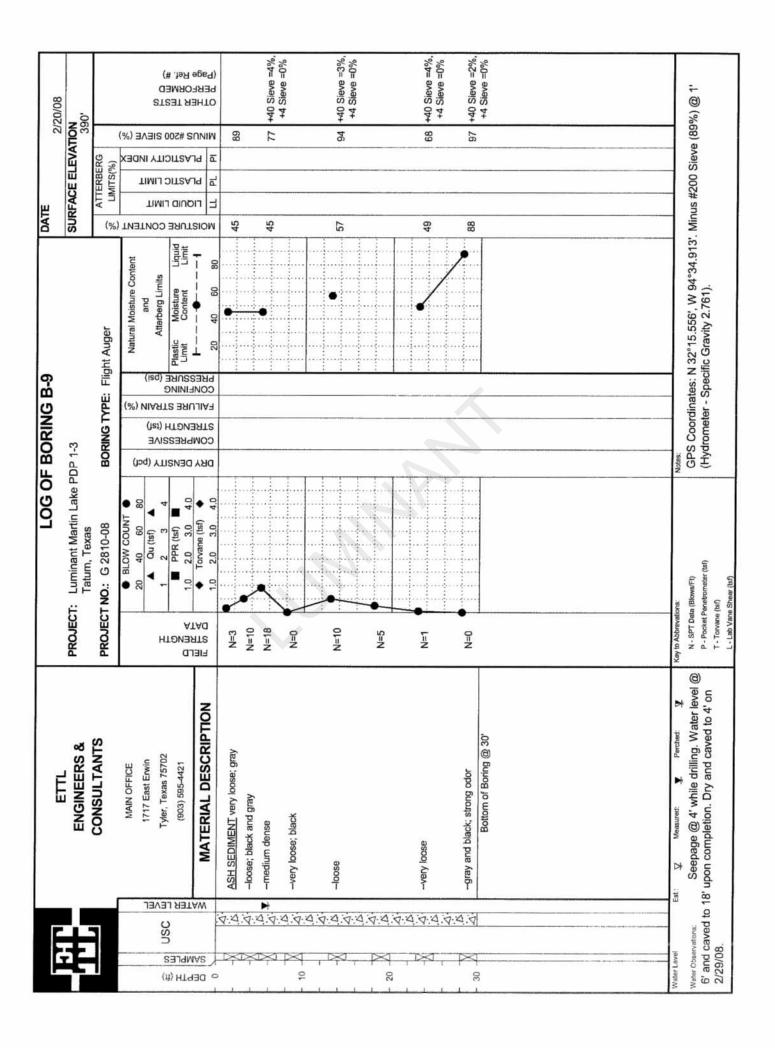












JUGRO

CPT Data

Job Number 04.1908-0020

CPT Number____

Elevation

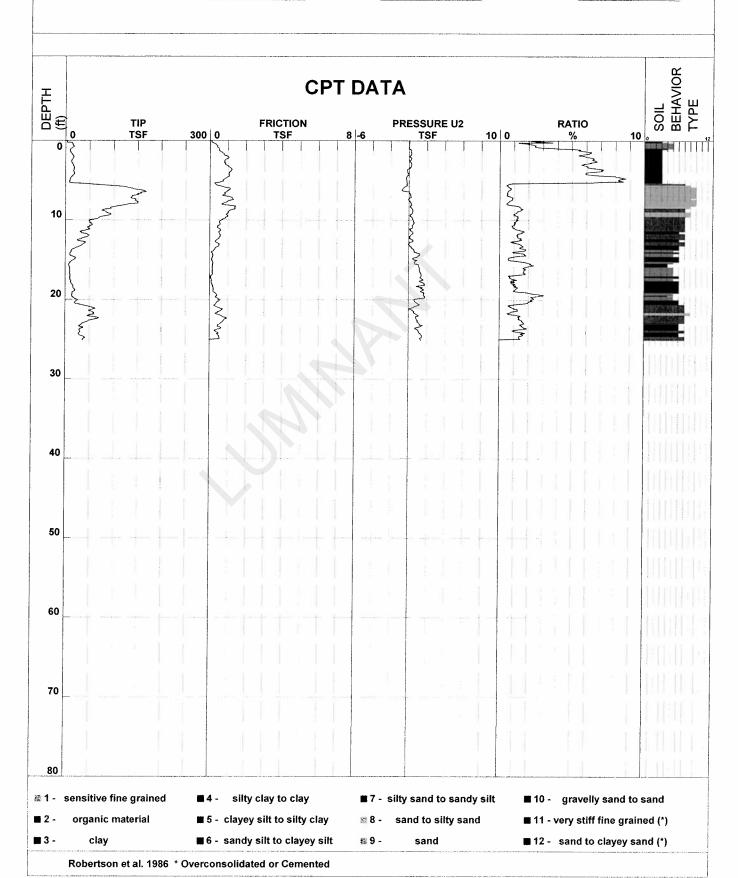
Location

13:47:38

Tatum-Tx

Operator

Client


GLENN JOHNSON

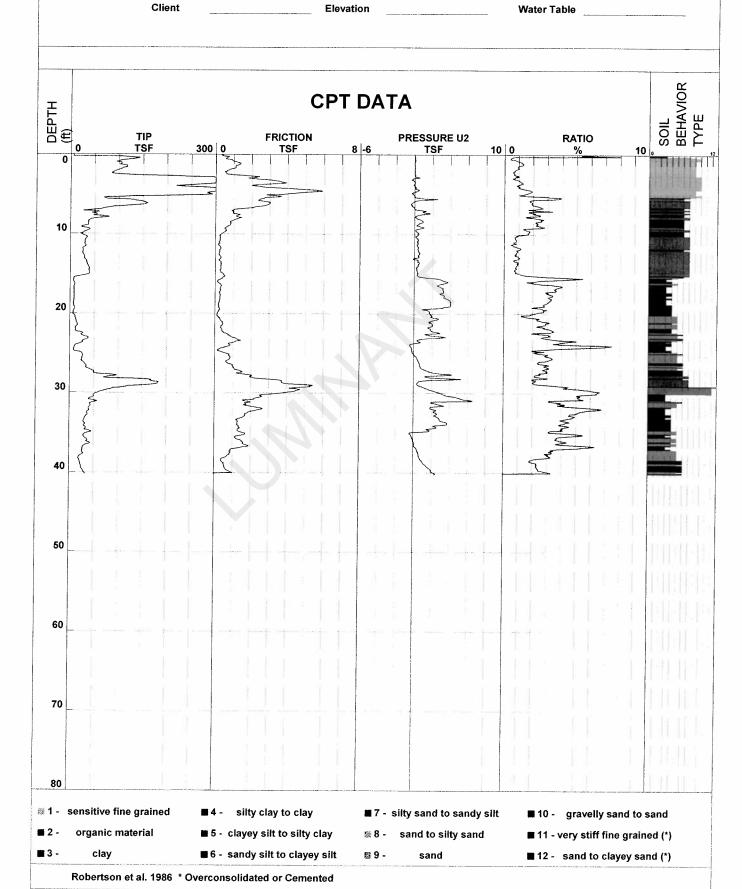
Date and T 16-Apr-2008

B-02

Cone Number_F7.5CKEW2/B 1866

Water Table

CPT Data


Job Number 04.1908-0020 Operator **GLENN JOHNSON**

CPT Number B-07 Date and T 16-Apr-2008

12:40:51

Location Tatum-Tx Cone Number F7.5CKEW2/B 1866

Water Table

CPT Data

Job Number 04.1908-0020

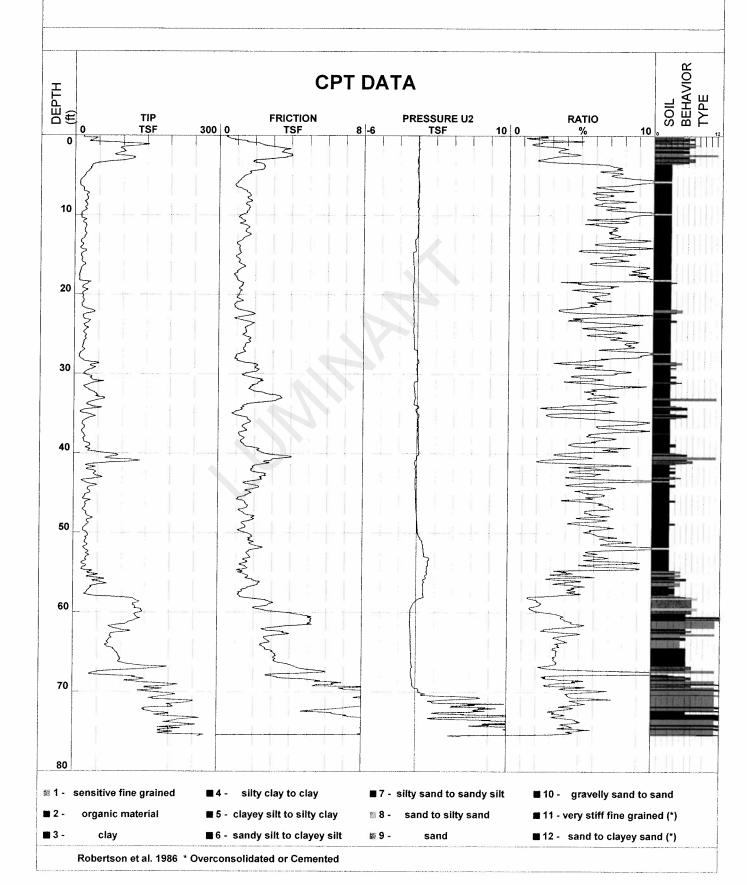
Operator **GLENN JOHNSON**

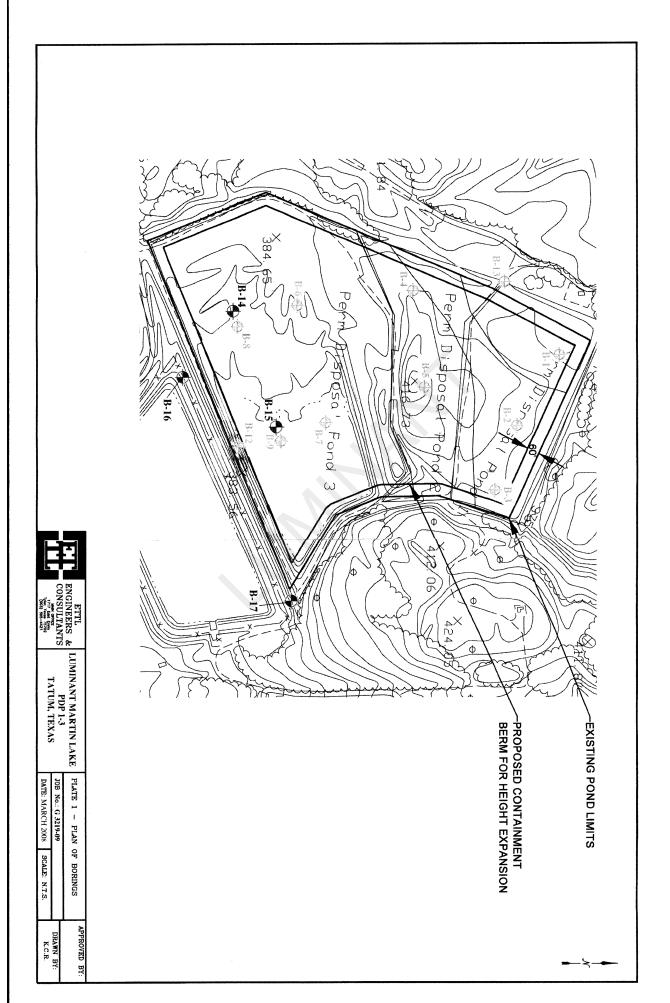
Client

CPT Number B-12

Elevation

Date and T 16-Apr-2008


10:58:47


Location

Tatum-Tx

Cone Number F7.5CKEW2/B 1866

Water Table

		0 907	LOG OF BORING B-14	1-14	DATE	l «	8/18/09
	ETTL ENGINEERS &	PROJECT: Luminant Martin Lake PDP 1-3 Supplemental Tatum, Texas	PDP 1-3 Suppleп	nental	SURFACE ELEVATION	VATIC	N
	CONSULTANTS	PROJECT NO.: G3219-09	BORING TYPE	BORING TYPE: Rotary Wash	ATTERBERG		
OLOGIC UNIT CO NPLES NPLES	MAIN OFFICE 1717 East Erwin Tyler, Texas 75702 (903) 595-4421	SENGTH	DENSITY (pcf) PRESSIVE DENSTA (wf) OFFINITY (pcf)	Natural Moisture Content and and Atterberg Limits Atterberg Limits Plastic Moisture Limit Limit	STURE CONTENT (OUID LIMIT LASTIC LIMIT LASTICITY INDEX	12 #500 SIEAE (%)	ER TESTS FORMED 9 Ref. #)
SAN		rad ◆ 5:	COM STRI FAIL	CON 20 40 60 80	a 로		РЕВ
	ASH SEDIMENT black;dark gray; with silty clayblack; with sand			4	59	83 83	+40 Sieve=3%, +4 Sieve=0% +40 Sieve=1%,
00	gray						+4 Sieve=0%
47.47.47.47	black; with silt			Ţ	86 65 51 14	95	+40 Sieve=1%, +4 Sieve=0%
7:4:7:4 	Bottom of Boring @ 30'						
Water Level Est.:	: 文 Messured: 掌 Perched: 掌 Seepage @ 5' while drilling.	Key to Abbrevations: N - SPT Data (Blows/Ft) P - Pocket Penetrometer (tsf) T - Torvane (tsf) L - Lab Vane Shear (tsf)	Notes:	oles: GPS Coordinates: N 32° 15.549', W 94°34.971'			

8/18/09			E/E (%)	ASTICITY \$ #200 SI R TESTS PRMED Ref. #)	MINUS OTHEI			47 +40 Sieve=9%,	+4 Sieve=1%		95 +40 Sieve=2%, +4 Sieve=0%					85 +40 Sieve=7%,	+4 Sieve=3%	
	SE E	ATTERBERG LIMITS(%)	TIM	ASTIC LII	/1d <u>a</u>				,									
DATE	URFA	-		MID FIMI	i_			42			62					52		
	<u> </u>		itent	Atterberg Limits Moisture Liquid Content Limit	- 8	3		•								•		GPS Coordinates: N 32° 15.556', W 94°34.913'
15	ıntal	BORING TYPE: Rotary Wash		SURE (ps	<u> </u>					· · · · · · · · · · · · · · · · · · ·			·····				1	.s: N 35
9.	pleme	YPE: I		RE STRAINING	CONE					- 								Jinate
SING.	3 Supt	NG T		RESSIVI at) HTDV														Coor
BOF	JP 1-3	BOR		PERSITY								5			<u> </u>			Notes:
LOG OF BORING B-15	JECT: Luminant Martin Lake PDP 1-3 Supplemental Tatum, Texas	JECT NO.: G3219-09	● BLOW COUNT ● 20 40 60 80 A Ou (isf) ▲		No. 2.0 3.0 1.0 2.0 3.0 1.0 1.0 2.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		0		2						6	•		Key to Abbrevations: N - SPT Data (Blows/Ft) P - Pocket Penetrometer (Isf)
	PROJ	PROJ		C	FIELI STRE	N=16	N=10	N=22	N=2		Z L				6 Z	N 1=	·	Key to At N - S P - P
	ETTL ENGINEERS &	CONSULTANTS	MAIN OFFICE 1717 East Erwin	F	MATERIAL DESCRIPTION	LEAN CLAY(CL) tan, gray, and red ASH SEDIMENT gray	no recovery black; with clay and silt	ASH SEDIMENT gray; with sand; laminated	with silt		with sand	full recovery		no recovery	black	black and gray	Bottom of Boring @ 30'	Est: ♀ Measured: ▼ Perched: ♀ Seepage @ 5' while drilling.
				EK FENE FOGIC N	IOEOI ITAW	<i> :</i>	0.0	<u> </u>	4.0.	444	. V. A.	V.V.V.	. V. V	. V. A	7.4	7:4:		
				C SC	DEPT	J	IXI	×	\succ				- 20			\geq	, , ,	Water Level Water Observations:

					LOG OF BORING B-16	F BC	SRIN	GB	-16		DATE	ш			8/18/00	00/2
¥ŧ			ETTL ENGINEERS &	PROJECT:	T: Luminant Martin Lake PDP 1-3 Supplemental Tatum Texas	PDP	1-3 Suļ	pplem	ental		SUR	SURFACE ELEVATION	EE	:VAT		
			CONSULTANTS	PROJEC	ECT NO.: G3219-09	80	RING	IYPE:	Rota	BORING TYPE: Rotary Wash	(%)	ATTE	ATTERBERG LIMITS(%)			
	و -	C UNIT	MAIN OFFICE 1717 East Erwin Twer. Texas 75702	H.	● BLOW COUNT ● 20 40 60 80 ■ Qu (tsf) ■ 1 2 3 4	ITY (pcf)		(%) NIAЯT	(isd)	Natural Moisture Content and Atterberg Limits	CONTENT		TIMIT C	O SIEVE (%)	(%) =A=Ie 0	Œ
(fi) HT9) ((903) 595-4421	TENE	■ PPR (tsf) ■ 1.0 2.0 3.0 4.0	DENS	RESS ENGTH		IFINING SSURE	Plastic Moisture Liquid Limit Content Limit	BRUTS	ומחום			107# 90	ER TE: FORME e Ref. #
_		OE	MATERIAL DESCRIPTION	317 ITS 'AQ	◆ Torvane (tsf) ◆1.0 2.0 3.0 4.0	ספא	1			20 40 60 80	IOM	+	+	$\overline{}$	MILIA	ЯЗЧ
>	ರ 		SANDY LEAN CLAY(CL) orange and tan	P=1.2					i							
i			tan and gray	P=1.5 P=4.3		:				J	5	29	4	15	34 +	+40 Sieve=1%, +4 Sieve=0%
			orange and tan	P=1.25 P=3.6		· · · · · · · · · · · · · · · · · · ·			•							
Ç	S	11.7.7.	CLAYEY SAND(SC) gray and orange	P=1.5		: 1			. i		16	32	16 1	16	37 +4	+40 Sieve=0%, +4 Sieve=0%
2	11111	11.1.1.		O. L.				,								
~		1.62.5		2		: :			<u>. :</u>							
- K	¥ d	//:=ili	SANDY CLAYEY SILT(ML) orange and light cray	N=21		:	*									
2			LEAN CLAY(CL) gray and reddish tan													
				N=33		: :		>	. :	Ţ	56	46	23	23	82 +4	+40 Sieve=4%, +4 Sieve=1%
300			orange and tan; with trace of lignite	N=26	•	: 1			.							
	8	11114.15.15.1	CLAYEY SAND(SC) tan and brown	P=1.0					<u> </u>	Ţ	59	84		8 	85 + 4	+40 Sieve=5%, +4 Sieve=0%
	S S	(/\$	<u>SAND</u> (SP) gray	N=49	•	· · · · · ·						-				
9	1	1	Bottom of Boring @ 40'													
Water Level	g g	Est.:	∑ Measured: ▼ Perched: ♀	Key to Abbrevations: N - SPT Data (BI	tions: ta (Blows/Ft)	Notes:	S Coo	rdinat	es: N	otes: GPS Coordinates: N 32° 15.484', W 94°34.965'	ž					
Water Co	Water Observations:			P - Pocket	P - Pocket Penetrometer (tsf) T - Torvane (tsf)											
				L - Lab Van	Vane Shear (tsf)	\downarrow										

PROJECT University PROJECT PROJ				LOG OF	LOG OF BORING B-17	3 B-1		DATE	ш		8	8/18/09	
CONSULTANTS PROJECT NO. G3219-09 BORNO TYPE. Rotary Wash Average and service tends Average and service		ELIL ENGINEERS &	PROJEC		DP 1-3 Sup	olement	Jaj	SUR	FACE	ELE	ATIC	Z	
MATERIAL DESCRIPTION N=22 15 15 15 15 15 15 15	7	CONSULTANTS	PROJEC	T NO.: G3219-09	BORING T	YPE: R	otary Wash	(%)	ATTER LIMIT	BERG S(%)			
MATERIAL DESCRIPTION Pad 54 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 2			ŀ	BLOW COUNT 40 60 A Qu (tsf) ▲	IIVE	-		CONTENT ((%) 3/3IS	D	(
MATERIAL DESCRIPTION	NPLES CS		TENGT	PPR (tsf) 2.0	PRESS	ILINING	Plastic Moisture Limit Content	∃Я∪Т8			72 #500	FORME	e Ref. #
SANDYLEAN CLAY (CL) crange and tan	IAS)		ITS	Torvane (tsf) 2.0 3.0	CON	COV	20 40 60 80		+-	+-	MIN	РЕК	(L sô
-drainge and brown P=4.5		SANDY LEAN CLAY(CL) orange and tan	P=4.5+									+40 Sieve	∋=7%,
-tan and gray -tan and gray -tan and gray, laminated -tan and orange -	-	orange and brown	P=4.0				Ţ					+4 Sieve	70,
-Lian and gray, laminated N=22		red, tan, and yellow tan and gray	P=4.5									+40 Sieve +4 Sieve	3=7%, 3=1%
tan and brown tan and gray; laminated tan and gray; laminated tan and orange tan and ora		<u>CLAYEY SAND</u> (SC) tan	N=40				Ţ					+40 Sieve	∋=0%,
tan and gray; laminated		tan and brown	N=22									+4 Sieve	%0=6
gray and orange	8	tan and gray; laminated	N=19										
tan and orange		gray and orange	N=20				1					+40 Sieve	e=0%,
tan and orange tan and orange Bailed to 20' and open upon completion. tan and orange N=24 Rey to Abbrevations: N-SPT Data (BlowsFt) P-Pocket Penetrometer (ts) T-Toware (tst) T-Toware (tst) T-Toware (tst)	8	tan	90 N	•								+4 Sieve	%0= -
Pocket Penetrometer (tst) Let an and orange Bottom of Boring @ 40' Est: ♀ Measured: ▼ Perched: ▼ Key to Abbrevations: No SPT Data (Blows)F1) P-Pocket Penetrometer (tst) T-Toware (tst) T-Toware (tst)						w							
Est: ⊈ Measured: ▼ Perched: ⊈ Key to Abbrevations: Bailed to 20' and open upon completion. P-Pocket Penetrometer (tst) T-Toware (tst)	8	tan and orange	N=24										
Est: \$\tilde{\Pi}\$ Measured: \$\pi\$ Perched: \$\pi\$\$ (Sty to Abbrevations: Notes: \tilde{\Pi}\$ Bailed to 20' and open upon completion. P-Pocket Penetrometer (tst) T-Towane (tst)		Bottom of Boring @ 40'											
			Key to Abbreval N - SPT Da P - Pocket I T - Torvane	ons: a (Blows/Ft) Penetrometer (Isf) (Isf)	S	dinates:	N 32° 15.566', W 94°34.73	.9					

APPENDIX B LABORATORY TEST RESULTS

BOTTOM ASH PONDS AND SCRUBBER POND

Golder Sociates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

SUMMARY OF LABORATORY RESULTS

PAGE 1 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER 123-94128	PROJECT LOCATION	Martin Lake

	120 0 111		Dir "	Di	Maximum		Ol	Water	Dry	Satur-	.,
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Size (mm)	%<#200 Sieve	Class- ification	Content (%)	Density (pcf)	ation (%)	Void Ratio
BH-201	0.0							19.2			
BH-201	2.0							13.7			
BH-201	6.0	26	14	12				9.4			
BH-201	8.0							15.1			
BH-201	13.0							16.3			
BH-201	18.0							20.8			
BH-201	23.0	36	14	22				19.9			
BH-201	28.0							18.2			
BH-201	33.0							15.0			
BH-201	38.0				0.85	40		14.9			
BH-201	43.0							21.4			
BH-201	48.0							23.5			
BH-202	0.0							20.8			
BH-202	2.0	55	19	36				17.1			
BH-202	4.0							20.5			
BH-202	6.0							26.7			
BH-201 BH-201 BH-201 BH-201 BH-201 BH-202 BH-203 BH-203 BH-203 BH-203 BH-203	8.0							15.3			
BH-202	13.0							14.9			
BH-202	18.0	29	13	16				17.1			
BH-202	23.0							17.6			
BH-202	28.0				0.85	49		18.1			
BH-202	33.0							17.0			
BH-202	38.0							20.8			
BH-202	43.0							23.0			
BH-202	48.0							26.2			
BH-203	0.0							12.6			
BH-203	2.0							14.6			
BH-203	4.0							16.1			
	6.0	50	19	31				21.5			
BH-203	8.0							22.3			
BH-203	13.0							18.0			
BH-203	18.0							14.6			
BH-203	23.0							17.3			
BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-203 BH-204 BH-204 BH-204 BH-204	25.0							19.9			
BH-203	28.0				2	17		23.6			
BH-203	30.0							27.7			
BH-203	33.0							29.1			
BH-203	38.0							29.4			
BH-204	0.0							13.9			
BH-204	2.0							21.1			
BH-204	4.0							15.0			
BH-204	6.0							16.6			
BH-204	8.0							13.5			

Golder Sociates 500 Century Plaza Drive, Suite 190 Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

SUMMARY OF LABORATORY RESULTS

PAGE 2 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER 123-94128	PROJECT LOCATION	Martin Lake

Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
BH-204	28.0				4.75	58		19.1			
BH-204	33.0							13.8			
BH-204	38.0							21.0			
BH-204	43.0	51	20	31				26.6			
BH-204	48.0							23.8			
BH-205	0.0							17.5			
BH-205	2.0							15.6			
BH-205	4.0							15.5			
BH-205	6.0							20.7			
BH-205	8.0							17.4			
BH-205	13.0	47	15	32				23.0			
BH-205	18.0							22.9			
BH-205 BH-206	23.0	28	17	11				16.3			
BH-205	28.0				4.75	69		16.4			
BH-205	33.0							14.7			
BH-205	38.0							25.4			
BH-205	43.0							26.7			
BH-205	48.0							25.0			
BH-205	53.0				9.5	11		25.9			
BH-206	0.0							17.1			
BH-206	2.0	44	15	29				15.6			
BH-206	4.0							14.0			
BH-206	6.0							16.2			
BH-206	8.0							21.7			
BH-206	13.0							18.1			
BH-206	18.0							12.2			
BH-206	23.0							15.9			
BH-206	28.0	59	17	42				20.3			
	33.0							19.8			
BH-206	38.0							18.2			
BH-206	43.0							22.1			
BH-206	48.0							23.3			
BH-206	53.0							23.0			
BH-206	58.0							22.1			
BH-207	0.0							15.6			
BH-207	2.0							15.3			
BH-207	4.0							14.9			
BH-207	6.0							18.2			
BH-207	13.0							18.9			
BH-207	18.0							13.0			
BH-207	23.0							16.9			
BH-206 BH-206 BH-206 BH-206 BH-207	28.0	31	16	15				16.7			
g BH-207	33.0							17.4			

500 Century Plaza Drive, Suite 190

SUMMARY OF LABORATORY RESULTS

PAGE 3 OF 4

CLIENT Luminant

PROJECT NAME Pond Slope Stability

PROJECT NUMBER	123-94128	PROJECT LOCATION	Martin Lake
----------------	-----------	------------------	-------------

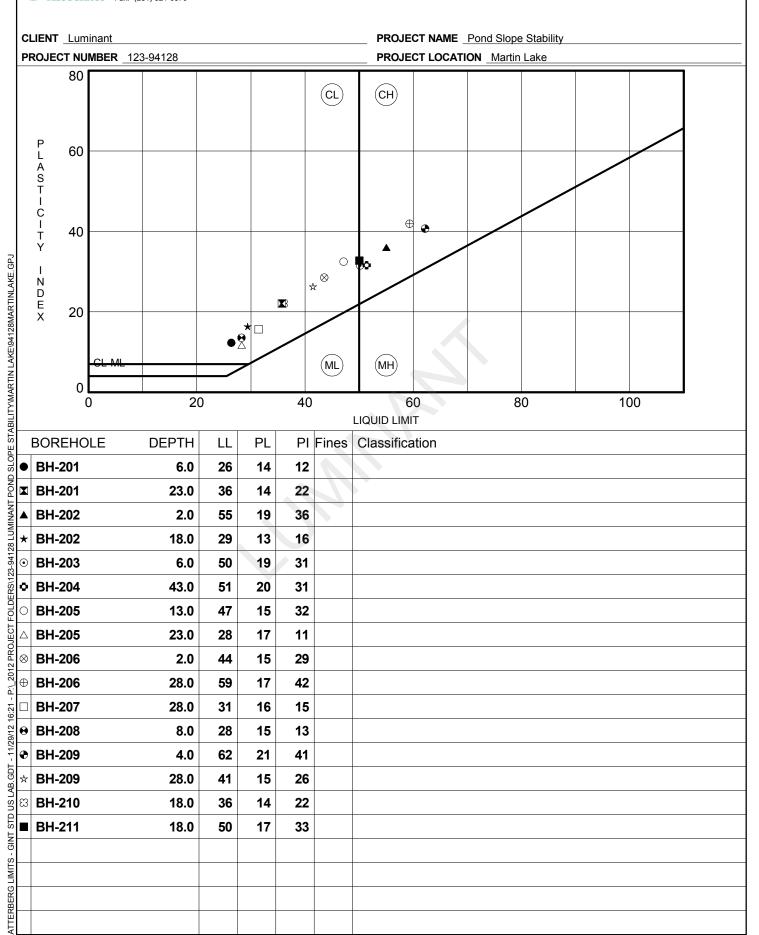
Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
BH-207	38.0							19.0			
BH-207	43.0							21.8			
BH-207	48.0							22.2			
BH-207	53.0							25.2			
BH-207	58.0							29.8			
BH-208	0.0							20.2			
BH-208	2.0							16.2			
BH-208	4.0							12.9			
BH-208	6.0							11.5			
BH-208	8.0	28	15	13				15.2			
BH-208	13.0							15.9			
BH-208	18.0							20.2			
BH-208	23.0							18.0			
BH-208	28.0							21.3			
BH-208	33.0							18.1			
BH-208	38.0							19.1			
BH-208	43.0							23.7			
BH-208	48.0				4.75	11		24.5			
BH-208	53.0				4.70			27.1			
BH-208	58.0							26.1			
BH-209	0.0							9.0			
BH-209	2.0							11.8			
BH-209	4.0	62	21	41				11.8			
BH-209	6.0	02	21	7.				12.1			
BH-209	8.0							19.2			
BH-209	13.0							12.3			
BH-209	18.0							21.0			
BH-209	28.0	41	15	26				23.3			
BH-209	33.0	71	10	20				20.0			
BH-209	35.0							21.2			
BH-209	38.0							17.9			
BH-209	43.0							24.0			
BH-209	48.0							21.2			
BH-210	0.0							8.2			
BH-210	2.0							10.7			
BH-210	4.0							13.4			
BH-210	6.0							14.4			
BH-210	8.0							15.7			
BH-210	13.0							21.3			
BH-210	18.0	36	14	22				22.9			
BH-210	23.0	30	14					25.0			
	_										
BH-210 BH-210	28.0 33.0							18.5 19.3			

500 Century Plaza Drive, Suite 190

SUMMARY OF LABORATORY RESULTS

PAGE 4 OF 4

CLIENT Luminant


PROJECT NAME Pond Slope Stability

PROJECT NUMBER 123-94128 PROJECT LOCATION Martin Lake

	Borehole	Depth	Liquid Limit	Plastic Limit	Plasticity Index	Maximum Size (mm)	%<#200 Sieve	Class- ification	Water Content (%)	Dry Density (pcf)	Satur- ation (%)	Void Ratio
	BH-210	38.0							17.2			
	BH-210	43.0							25.6			
	BH-210	48.0				9.5	33		33.4			
	BH-210	53.0							29.3			
	BH-210	58.0							29.3			
	BH-210	63.0							26.6			
	BH-210	68.0							31.1			
	BH-211	0.0							8.7			
2	BH-211	2.0							13.3			
A	BH-211	4.0							15.0			
NI I	BH-211	6.0							14.5			
MAR	BH-211	8.0							13.2			
4128	BH-211	13.0							17.6			
KE)	BH-211	18.0	50	17	33				15.0			
S ≥	BH-211	23.0							11.6			
MART	BH-211	28.0				9.5	52		11.6			
<u> </u>	BH-211	33.0							22.5			
ABIL	BH-211	38.0							21.1			
ES.	BH-211	43.0							24.3			
SLO	BH-211	48.0							24.3			
	BH-211	53.0				ŀ			24.9			
23-94128 LUMINANT POND SLOPE STABILITY/MARTIN LAKE/94128MARTINLAKE.GPJ	BH-211	58.0							22.9			
Ž	BH-211	63.0							29.5			
78 LL	BH-211	68.0							26.6			

500 Century Plaza Drive, Suite 190 Golder Associates Houston, Texas 77073 Telephone: (281) 821-6868 Fax: (281) 821-6870

ATTERBERG LIMITS' RESULTS

Golder

•

BH-202

BH-203

BH-204

BH-205

28

28

28

28

0.85

2

4.75

4.75

0.096

0.189

0.078

0.034

0.125

0.018

0.005

0.0

0.0

0.0

0.0

51.3

83.5

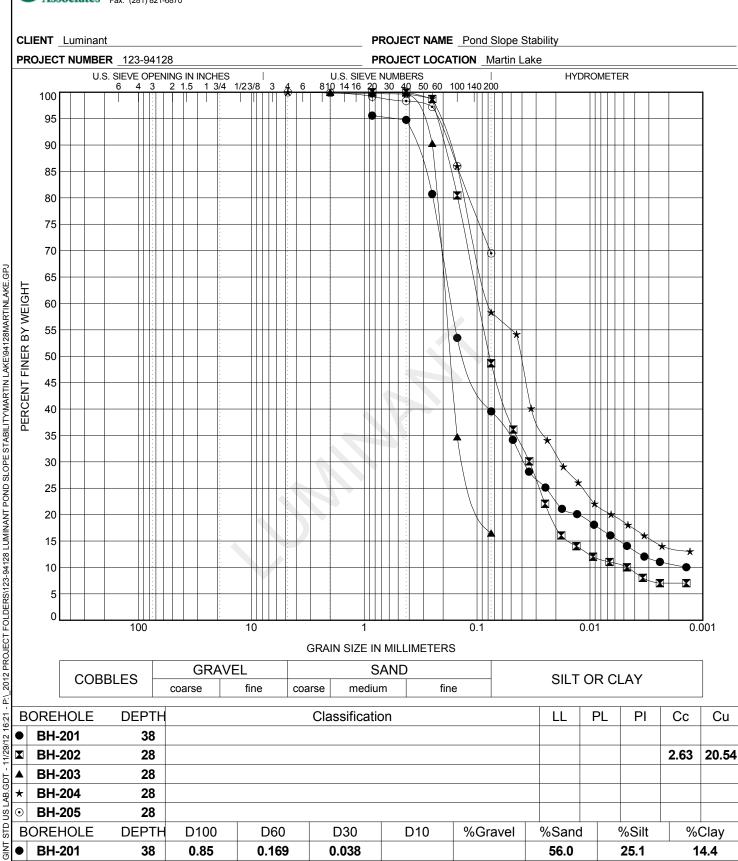
41.7

30.5

38.4

39.8

16.5


69.5

10.2

18.5

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 **Golder** Telephone: (281) 821-6868 Fax: (281) 821-6870

GRAIN SIZE DISTRIBUTION

Golder

BH-210

BH-211

*

48

28

9.5


9.5

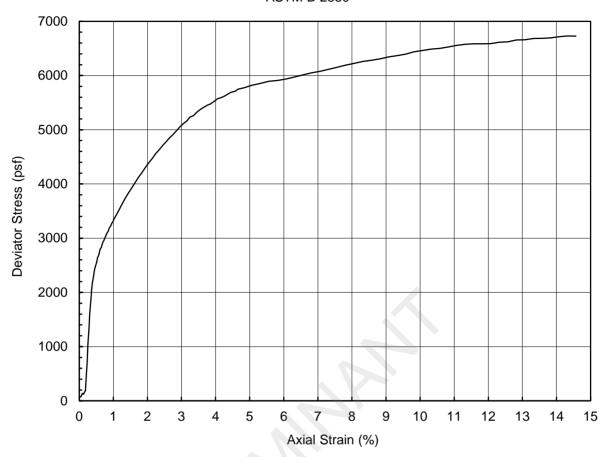
0.105

0.084

500 Century Plaza Drive, Suite 190 Houston, Texas 77073 **Golder** Telephone: (281) 821-6868 Fax: (281) 821-6870

GRAIN SIZE DISTRIBUTION

0.2

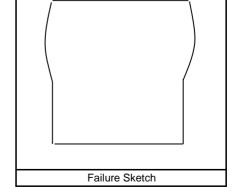

1.1

67.2

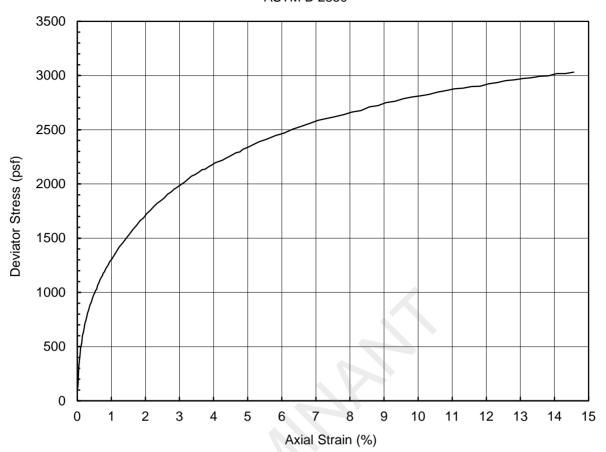
46.5

32.5

52.4

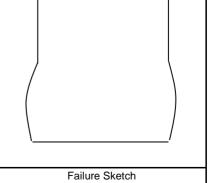


Specimen Descriptio	Reddish Yellow Clay (visua	al classification)		
LL	PI	LI	USCS	

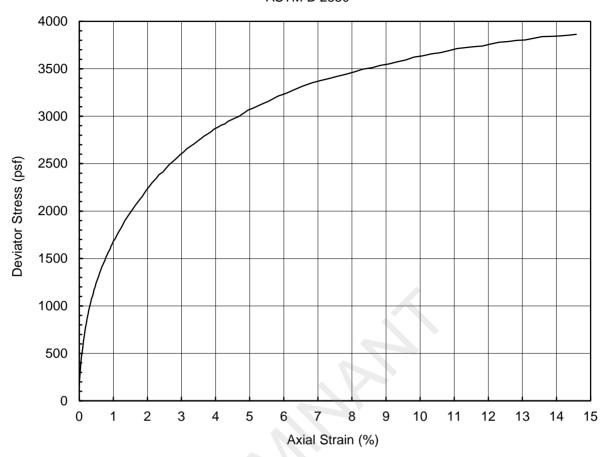

	Depth (ft)	4.0	Confining Pressure (psf)	617
	Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
	Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6732
	Initial Specimen Weight (g)	1263.7	Axial Strain at Peak Stress (%)	14.3
	Moist Unit Weight (pcf)	131.9		
I	Initial Water Content (%)	15		

114.6

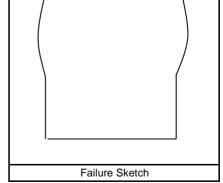
Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-201 TO-3
Comments	

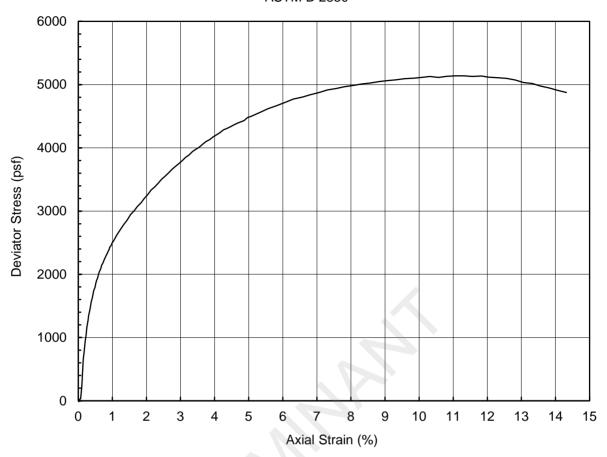

Performed by	PN
Date	12-Nov-12
Check	HR
Review	SBK

Specimen Description Reddish Yellow Clay (visual classification)					
LL	PI	LI		USCS	


Depth (ft)	18.0	Confining Pressure (psf)	2371
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	3035
Initial Specimen Weight (g)	1232.8	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	132.4		
Initial Water Content (%)	19		 ,
Initial Dry Unit Weight (pcf)	111.7		

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-202 TO-7
Comments	

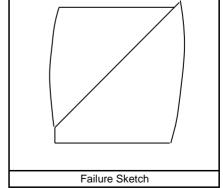

Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK


Specimen Description Reddish Gray Clay (visual classification)					
LL	PI	LI		USCS	

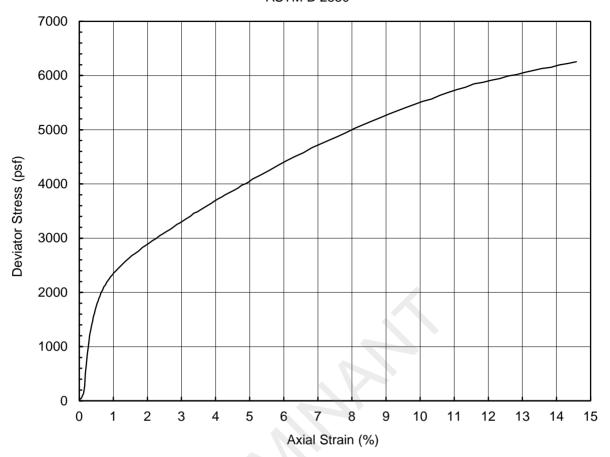
Depth (ft)	6.0	Confining Pressure (psf)	858
Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	3877
Initial Specimen Weight (g)	1199.6	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	124.7		
Initial Water Content (%)	21] ,	 ,
Initial Dry Unit Weight (pcf)	102.7		\

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-203 TO-4
Comments	

Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK

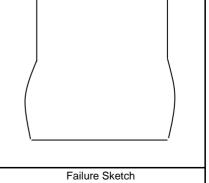


Specimen Description Reddish Gray Clay (visual classification)							
LI	-	PI		LI		USCS	

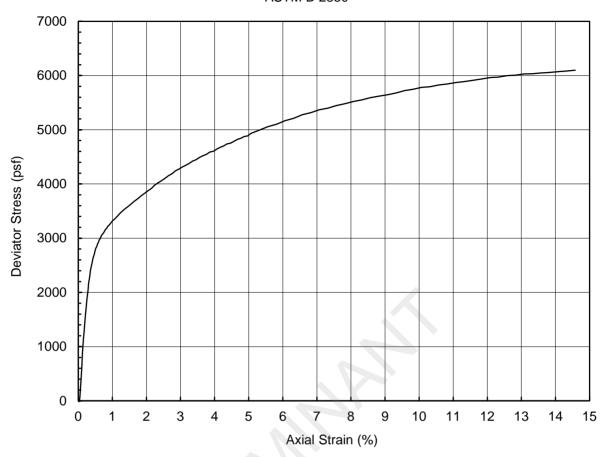

	Depth (ft)	23.0	Confining Pressure (psf)	3008
	Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
	Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	5139
	Initial Specimen Weight (g)	1192.8	Axial Strain at Peak Stress (%)	11.3
	Moist Unit Weight (pcf)	126.6		
ſ	Initial Water Content (%)	26		

100.9

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-204 TO-8
Comments	

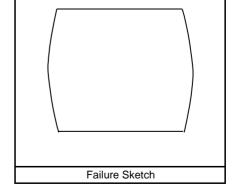

Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK

Specimen Description Reddish Yellow Clay (visual classification)					
LL	PI	LI		USCS	

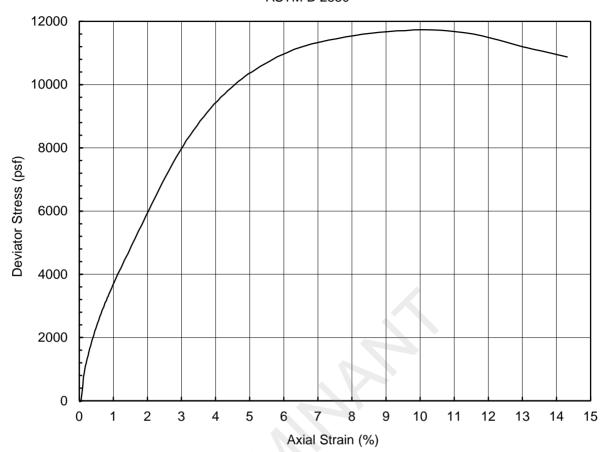

Depth (ft)	13.0	Confining Pressure (psf)	1760
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6270
Initial Specimen Weight (g)	1252.5	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	131.9		
Initial Water Content (%)	27		
Initial Dry Unit Weight (pcf)	104.1		

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-205 TO-6
Comments	

Performed by	PN
Date	13-Nov-12
Check	HR
Review	SBK



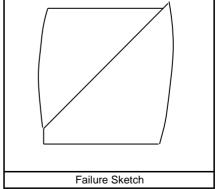
Specime	n Description	Grayish Brown	Fat Clay				
LL	59	PI	42	LI	0.1	USCS	СН


Depth (ft)	28.0	Confining Pressure (psf)	3627
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6110
Initial Specimen Weight (g)	1219.7	Axial Strain at Peak Stress (%)	14.8
Moist Unit Weight (pcf)	127.5		
Initial Water Content (%)	20		

106.6

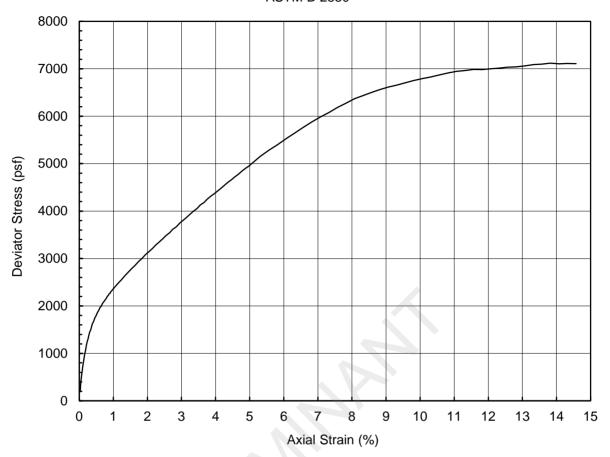
Project Title Luminant - Martin Lake Slope Stability
Project Number 123-94128
Sample Type Shelby Tube
Sample ID BH-206 TO-9
Comments

Performed by	PN
Date	15-Nov-12
Check	HR
Review	JF



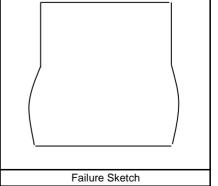
Specime	n Description	Grayish Brown	Lean Clay				
LL	31	PI	15	LI	0.0	USCS	CL

Depth (ft)	28.0	Confining Pressure (psf)	3620
Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	11735
Initial Specimen Weight (g)	1251.9	Axial Strain at Peak Stress (%)	10.1
Moist Unit Weight (pcf)	127.7		
Initial Water Content (%)	16		


109.9

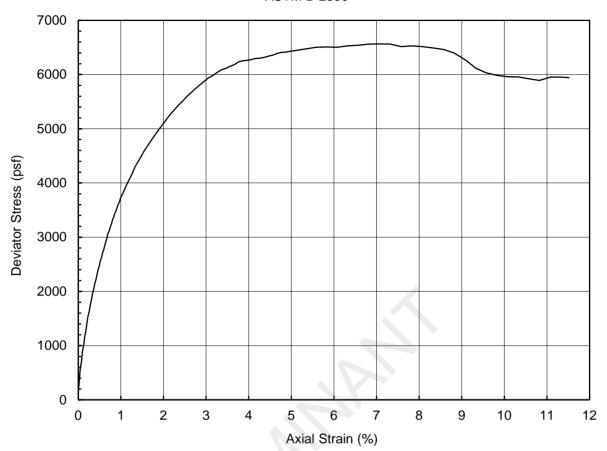
Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-207 TO-9
Comments	

Performed by	PN
Date	15-Nov-12
Check	HR
Review	JF



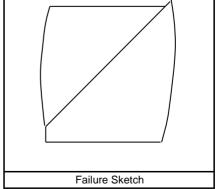
Specime	en Description	Reddish Yello	w Lean Clay				
LL	28	PI	13	LI	0.0	USCS	CL

	Depth (ft)	8.0	Confining Pressure (psf)	1046
	Specimen Height (inch)	5.9	Strain Rate (%/min)	1.0
	Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	7118
	Initial Specimen Weight (g)	1287.7	Axial Strain at Peak Stress (%)	13.8
	Moist Unit Weight (pcf)	138.1		
ſ	Initial Water Content (%)	14		


120.7

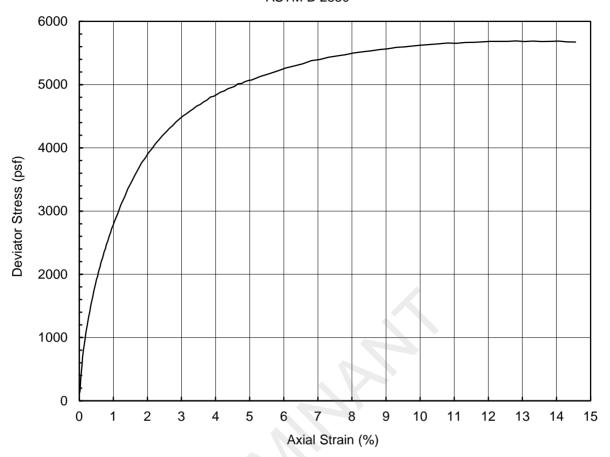
lity

Performed by	PN
Date	16-Nov-12
Check	HR
Review	JF



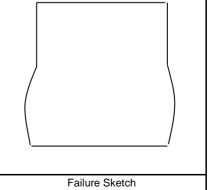
Specime	n Description	Grayish Brown	Lean Clay				
LL	41	PI	26	LI	0.3	USCS	CL

Depth (ft)	28.0	Confining Pressure (psf)	3624
Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	6566
Initial Specimen Weight (g)	1202.8	Axial Strain at Peak Stress (%)	7.1
Moist Unit Weight (pcf)	128.0		
Initial Water Content (%)	22]	


104.7

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-209 TO-9
Comments	

Performed by	PN
Date	16-Nov-12
Check	HR
Review	JF



Specim	en Description	Reddish Gray	Lean Clay				
LL	36	PI	22	LI	0.5	USCS	CL

	Depth (ft)	18.0	Confining Pressure (psf)	2375
	Specimen Height (inch)	6.0	Strain Rate (%/min)	1.0
	Specimen Diameter (inch)	2.8	Peak Deviator Stress (psf)	5691
	Initial Specimen Weight (g)	1192.0	Axial Strain at Peak Stress (%)	12.8
	Moist Unit Weight (pcf)	126.7		
ſ	Initial Water Content (%)	24		 .

102.2

Project Title	Luminant - Martin Lake Slope Stability
Project Number	123-94128
Sample Type	Shelby Tube
Sample ID	BH-210 TO-7
Comments	

Performed by	PN
Date	16-Nov-12
Check	
Review	

PROJECT INFORMATION

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 06 CLIENT:

Movember 2008

TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 76702

TEST DESCRIPTION

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample DESCRIPTION: Ten, Brown & Red Sandy Lean Clay

Sampled on Site, B-13 3' to 10' deep

ASSUMED SPECIFIC GRAVITY 2.7 +40 Sieve LL PL: PL PL Percent-200:

REMARKS: Both Ends & Diameter Trimmed

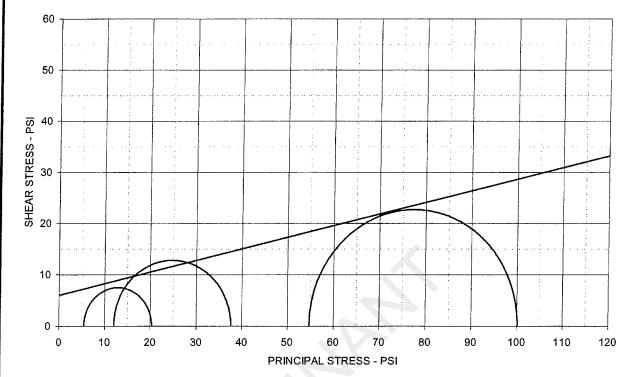
+ # 4 Sieve

PLATE: B.1

PLATE, B.2

PLATE: B.3

Number of Specimens = 3


SPECIMEN DATA SPECIMEN NO. 1							
	initial	final	D	iameter	He	eight	
Moist soil & Tare :	522.40 g	621.30 g	top	2.04 in	Ht 1	2856200000000000000	in
Dry soil and Tare :	468.70 g	544.40 g	mid	2,04 in	Ht 2	4.44	n
Tare :	129.80 g	119.40 g	bot	2.04 in	Ht 3	4.44	n
Moisture content :	15.85 %	14.00 9	6 Avg	204 in	Ht4	4.44	n
Weight:	496.1 g			Section Community	Avg Ht	4 .24	n
Change in Ht due to s	saturation :		-0.02 in	Initial specin	nen vol :	259.54	cc
Change in Ht due to d	consolidation:		0.018 in	At test speci	men vol :	23454 (cc
Change in pipet vol d	ue to consolidati	ion :	2.0 cc	Initial dry de	nsity :	100002	ocf
Saturation Parameter	"B"= 05	15		At test dry de	ensity:	1 3 99 1	ocf
Strain Rate (in/min)	= 0.0005	Failure Strai	in % = 2	7 Effective Ce			10.0
σ₁' Failure (psi) = 20.41	σ₁ Failure ((psi) = 🔀 🍪 (10	Estim	ated v =∭	0.35
σ ₃ ' Failure (psi) = 5.41	σ ₃ Failure ((psi) = ** ******	Back Pres	sure (psi) =	50.0	
Δ	J = 4.8 To	tal Pore Pres	sure = 54	.6 Cell Pres	sure (psi) =	60.0	
		SPECI	MEN NO. 2				
	initial	final	Dia	ameter	He	ight	
Moist soil & Tare :	549.80 g	636.40 g	top	201 in	Ht 1	4.44 İI	n
Dry soil and Tare :	469.20 g	560.20 g	mid	2.01 in	Ht 2	4 44 ii	n i
Tare:	123.20 g	139.10 g	bot	2.01 in	Ht 3	4,44	า
Moisture content :	15.95 %	14.10 %	Avg	2.31 in	Ht4	4.44 ii	า
Weight:	496.0 g			(1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Avg Ht	4.44 ji	า
Change in Ht due to s	aturation :	-1	0.006 in	Initial specim	en vol :		С
Change in Ht due to c	onsolidation :		0.034 in	At test specir		227 % C	c
Change in pipet vol du	ue to consolidati	on : 🏻 🎹	3.9 cc	Initial dry der	nsity:	114.05 p	cf
Cationatian Danamatan	Communication Continues Co		************	A			

Total go in the date to compensation	22	000000000000000000000000000000000000000		930 ***************	
Change in pipet vol due to conso	lidation :	3.9 cc	Initial dry density:	40.00	pcf
Saturation Parameter "B"=	0.97		At test dry density:	1 6 93	pcf
Strain Rate (in/min) = 0.0005	Failure Stra	ain % = 📉 3.9	Effective Cell Pressure	(psi) =	29.0
σ ₁ ' Failure (psi) = 37.62	σ ₁ Failure	(psi) = 46.80	Estir	nated $v =$	0.35
σ_3 ' Failure (psi) = 12.02	σ_3 Failure	(psi) = 20 (d	Back Pressure (psi) :	= 50.0	
∆U = 8. 0	Total Pore Pres	ssure = 58.0	Cell Pressure (psi) :	70.0	

SPECIMEN NO. 3

		<u> </u>						
	initial	final		Dia	meter	He	eight	
Moist soil & Tare :	594.50 g	656,50	g	top	2.06 in	Ht 1	4.54	in
Dry soil and Tare :	530.1D g	579,20	g	mid	2.06 in	Ht 2	4.54	in
Tare :	126.30 g	139,30	g	bot	2.06 in	Ht 3	4.54	in
Moisture content :	15.95 %	17 67	%	Avg	7 00 in	Ht4	4.54	in
Weight:	518.0 g		_			Avg Ht		in
Change in Ht due to sat	uration :		-0.001	in	Initial specime	en vol :	2.75.	cc
Change in Ht due to cor	solidation:		-0.052	in	At test specim	nen vol :	34,200	cc
Change in pipet vol due	to consolida	ation :	5.6	CC	Initial dry den	sity:	1 2 2	pcf
Saturation Parameter "	B"= 0	.97	-		At test dry der	nsity:	11 6 10	pcf
Strain Rate (in/min) =	0.0005	Failure St	rain % =	8.5	Effective Cell	Pressure	(psi) =	40 0
σ ₁ ' Failure (psi) =	100.17	σ ₁ Failur	e (psi) =	65,40		Estim	ated ν =	0.35
σ_3 ' Failure (psi) =	54.77	σ ₃ Failur	e (psi) =	40 DE	Back Press	ure (psi) =	50.0	
∆U =	-14 5	Total Pore Pre	essure =	35.2	Cell Press	ure (psi) =	90.0	

TRIAXIAL SHEAR TEST REPORT

EFFECTIVE STRESS PARAMETERS	ECTIVE STRESS PARAMETERS φ'= 12		deg	c' =	6.0	psi
	SPECIME	N NO.	1	2	3	4
60.00			רואו	TAL		
	Moisture Con	tent - %	15.8	16.6	15.9	
50.00	Dry Density -	pcf	113.0	115.0	112.5	
₹	Diameter - inc	ches	2.04	2.01	2.06	
	Height - inche	es .	4.44	4.44	4.54	
85 40.00 W 30.00 20.00			AT T	EST		
30.00	Final Moisture	e - %	18.1	18.1	17.6	
	Dry Density -	pcf	114.0	116.9	115.1	
¥ 20.00	Calculated Diameter (in.)		2.02	2.00	2.04	
<u> </u>	Height - inches		4.40	4.40	4.49	
10.00	Effect. Cell Pr	essure - psi	10.0	20.0	40.0	
10.00	Failure Stress	- psi	15.00	25.60	45.40	
	Total Pore Pre	essure - psi	54.6	58.0	35.2	
0.00 10.0 20.0	Strain Rate - in	nches/min.	0.00050	0.00050	0.00050	
	Failure Strain	- %	2.7	3.9	8.5	
AXIAL STRAIN - %	σ ₁ ' Failure - psi		20.41	37.62	100.17	
	σ ₃ ' Failure - ps	si	5.41	12.02	54.77	
TEST DESCRIPTION		PROJEC	T INFORI	MATION		

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan, Brown & Red Sandy Lean Clay

Sampled on Site, B-13 3' to 10' deep

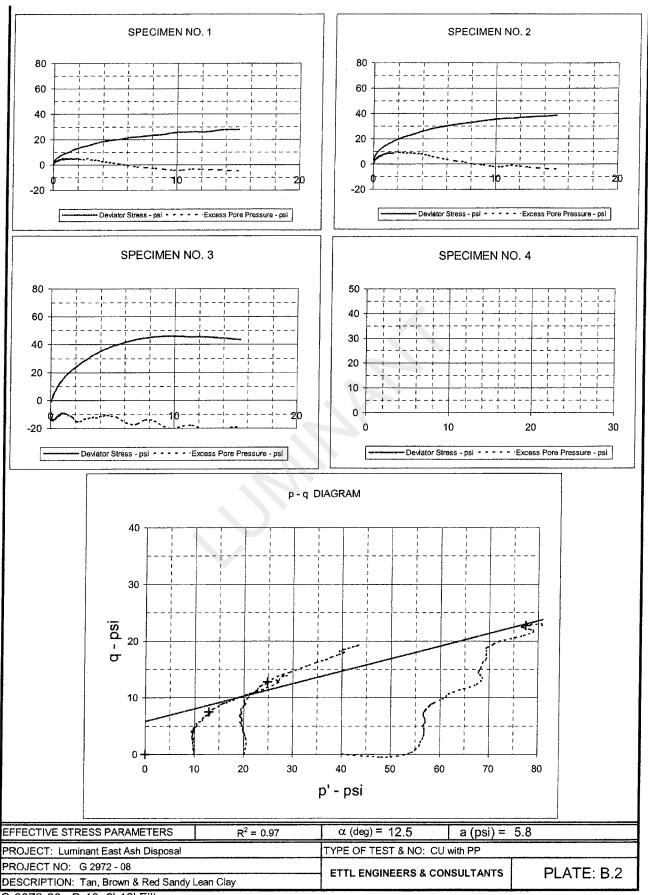
ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

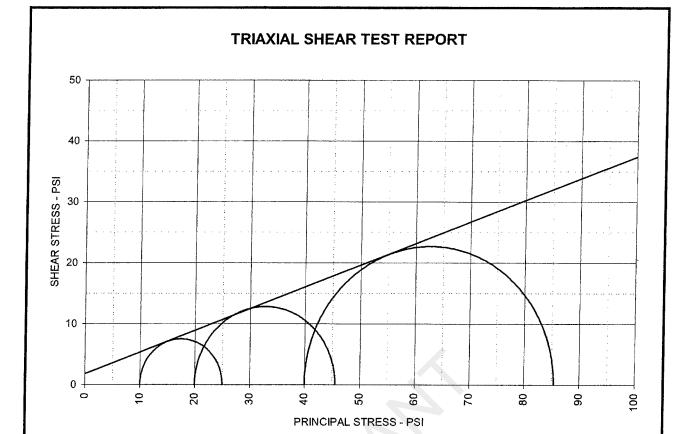
LL: PL: PI: Percent -200:

REMARKS: Both Ends & Diameter Trimmed + # 4 Sieve

Movember 2008

CLIENT:


ETTL ENGINEERS & CONSULTANTS


PROJECT: Luminant East Ash Disposal

LOCATION: Rusk County, Texas

PROJECT NO: G 2972 - 08

PLATE: B.1

Ţ	TOTAL STRESS PARAMETERS					
	60.00		<u> </u>			
<u>is</u>	50.00					
ESS - P	40.00					
DR STR	30.00	-//-				
EVIATO	20.00	1				
۵	10.00					
	0.00		·			
	0.0)	10	0.0	20.0	
		A	(IAL ST	RAIN - %		

φ =	c =	1.8	psi	
SPECIMEN NO.	1	2	3	4
	INI	TIAL		
Moisture Content - %	15.8	16.6	15.9	
Dry Density - pcf	113.0	115.0	112.5	
Diameter - inches	2.04	2.01	2.06	
Height - inches	4.44	4.44	4.54	
	AT ⁻	TEST		
Final Moisture - %	18.1	18.1	17.6	
Dry Density - pcf	114.0	116.9	115.1	
Calculated Diameter (In	.) 2.02	2.00	2.04	
Height - Inches	4.40	4.40	4.49	
Effect. Cell Pressure - p	osi 10.0	20.0	40.0	
Failure Stress - psi	15.00	25.60	45.40	
Total Pore Pressure - pr	si 54.6	58.0	35.2	
Strain Rate - inches/mir	0.00050	0.00050	0.00050	
Failure Strain - %	2.7	3.9	8.5	
σ₁ Failure - psi	25.00	45.60	85.40	
σ ₃ Fallure - psi	10.00	20.00	40.00	

TEST DESCRIPTION

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan, Brown & Red Sandy Lean Clay

Sampled on Site, B-13 3' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7

+ 40 Sieve Percent -200:

REMARKS: Both Ends & Diameter Trimmed + # 4 Sieve

PROJECT INFORMATION
PROJECT: Luminant East Ash Disposal

LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

CLIENT: Movember 2008

ETTL ENGINEERS & CONSULTANTS

PLATE: B.3

PROJECT INFORMATION

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

CLIENT:

Movember 2008

TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

TEST DESCRIPTION

TYPE OF TEST & NO. GU with PP SAMPLE TYPE. Native Sample

DESCRIPTION: Gray, Tan & Redo, Br Sandy Clay w/ some Graver

Sampled on Site, B-2 8' to 20' deep

ASSUMED SPECIFIC GRAVITY, 2.7 * 40 Sieve

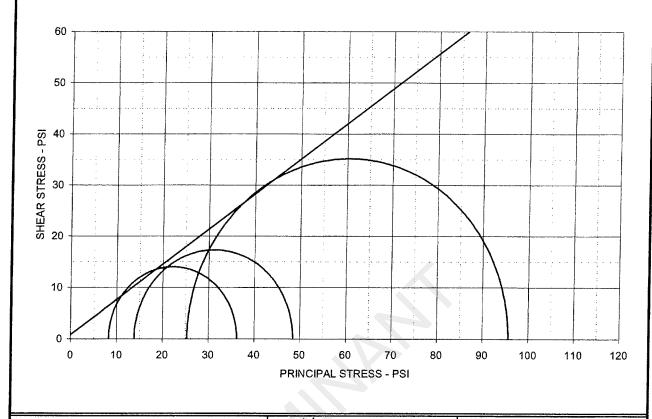
PL PI Percent 200:

REMARKS: Both Ends & Diameter Trimmed ##4 Sieve

PLATE: B.1

PLATE: B.2

PLATE: B.3


Number of Specimens = 3

SPECIMEN DATA

SPECIMEN NO. 1

		SPECIN	EN NO. I			
	initial	final	Di	ameter	H	eight
Moist soil & Tare :	479.30	630.20 g	top	2.08 in	Ht 1	4.25 in
Dry soil and Tare :	429.60	548.70 g	mid	2.08 in	Ht 2	4.25 in
Tare:	129.70 Q	128.00 g	bot	2.08 in	Ht 3	4.25 in
Moisture content :		% 19.37 %	Avg	203 in	Ht4	4.25 in
Weight:	496.8 C	1			Avg Ht	ACCURATION AND ADDRESS OF THE PARTY OF THE P
Change in Ht due to sa	aturation :	-0.	014 in	Initial specia		2595-94 CC
Change in Ht due to co			005 in	At test spec		230 34 cc
Change in pipet vol du		t	6 cc	Initial dry de		112.23 pcf
Saturation Parameter	Photo:	0.96		At test dry d	•	i 2.54 pcf
Strain Rate (in/min) =		Failure Strain	% = 2	4 Effective Ce		
σ ₁ ' Failure (pśi)		σ ₁ Failure (ps				iated v = 0.3
σ ₃ ' Failure (psi)	8.24	σ₃ Failure (ps	600000000000000000000000000000000000000	Back Pres	ssure (psi) =	50.0
	= 1.8	Total Pore Pressu	200000000000000000000000000000000000000	2000	ssure (psi) =	#1000000000000000000000000000000000000
	60000000000000000		9004869650000	2000	(/ /	************
		SPECIMI	EN NO. 2			
	initial	final	Dia	ameter	He	ight
Moist soil & Tare :	505.50 g	616.20 g	top	2.08 in	Ht 1	4.40 in
Dry soil and Tare :	451.40 g	537.60 g	mid	2.06 in	Ht 2	4.40 in
Tare:	114.00 g	102.60 G	bot	2.08 in	Ht 3	4.40 in
Moisture content :	16.03 %	18.07 %	Avg	2 38 in	Ht4	4.40 in
Weight:	511.6 g			- Hamman -	Avg Ht	4 40 in
Change in Ht due to sa	and the second second second second	0.0	01 in	Initial specin		245.64 CC
Change in Ht due to co	nsolidation	-0.0)48 in	At test speci		235 04 cc
Change in pipet vol due		*********	0 cc	Initial dry de		112.03 pcf
Saturation Parameter "		0.98		At test dry de	-	1 5 34 pcf
Strain Rate (in/min) =	PROPERTY OF THE PERSON NAMED IN COLUMN 1	Failure Strain 9	% = 3.·	4 Effective Ce		
σ ₁ ' Failure (psi) =	48.53	σ ₁ Failure (ps	201000000000000000000000000000000000000	100		ated $v = 0.3$
σ ₃ ' Failure (psi) =	000000000000000000000000000000000000000	σ ₃ Failure (ps	000000000000000000000000000000000000000		sure (psi) =	
ΔU =		Total Pore Pressur	404000000000000000	900	sure (psi) =	92,000,004,000,000,000,000
70 -		Total Fore Fressul	C	Cell Fles	suie (psi) –	70.0
		SPECIME	N NO 3			
	initial	final		meter	Hei	aht
Moist soil & Tare :	414.70 g	721.50 g	top	2.11 in	Ht 1	4.62 in
Dry soil and Tare :	381.70 g	652.20 g	mid	2,11 in	Ht 2	4.62 in
Tare:	102.50 g	139.10 g	bot	2.11 in	Ht 3	4.62 in
Moisture content :	11 33 %		Avg	2 11 in	Ht4	4.62 in
Weight:	579.6 g	,,0	79		Avg Ht	4.62 in
Change in Ht due to sat	- Marie Control Control	-0.0	218 in	Initial specim		ANA PUL CC
Change in Ht due to cor		\$0000000000000000000000000000000000000	18 in	At test specir		CC CC
Change in pipet vol due			4 cc	Initial dry der		122 34 pcf
Saturation Parameter "	252265).99		At test dry de	- 4	174 23 pcf
Strain Rate (in/min) =	0.0005	Failure Strain %	6 = 4 6	Effective Cell		
σ ₁ ' Failure (psi) =	22.5	σ ₁ Failure (psi	*****************		٠٠.	ted v = 0.35
σ_3 ' Failure (psi) =	VX.000000000000000000000000000000000000		(00000000000000000000000000000000000000	Dool: Dure	20	
σ_3 Failure (psi) = $\Delta U =$	*****************	σ ₃ Failure (psi Total Pore Pressure	000000000000000000000000000000000000000		sure (psi) = sure (psi) =	
				n i all Prace	aura (nell = 8	90.0

TRIAXIAL SHEAR TEST REPORT

EFFECTIVE STRESS PARAMETERS	φ'= 34.4	deg	c' =	0.8	psi		
	SPECIMEN NO.	1	2	3	4		
180.00		INITIAL					
160.00	Moisture Content - %	16.6	16.0	11.8			
ESCOSIBESE Z ISESES	Dry Density - pcf	112.3	112.1	122.3			
<u>8</u> 140.00	Diameter - inches	2.08	2.08	2.11			
1	Height - inches	4.25	4.40	4.62			
29 120.00 100.00	AT TEST						
	Final Moisture - %	19.4	18.1	13.5			
80.00	Dry Density - pcf	112.6	115.3	124.9			
60.00 60.00 60.00 60.00 60.00 60.00	Calculated Diameter (in.)	2.08	2.07	2.10			
	Height - inches	4.24	4.37	4.58			
40.00	Effect. Cell Pressure - psi	10.0	20.0	40.0			
20.00	Failure Stress - psi	28.02	34.65	70.28			
0.00	Total Pore Pressure - psi	51.8	56.1	64.6			
0.00 10.0 20.0	Strain Rate - inches/min.	0.00050	0.00050	0.00050			
	Failure Strain - %	2.4	3.4	4.6			
AXIAL STRAIN - %	σ ₁ ' Failure - psi	36.26	48.53	95.68			
	σ ₃ ' Failure - psi	8.24	13.88	25.40			
TEST DESCRIPTION		PROJECT	I INFORM	ATION			

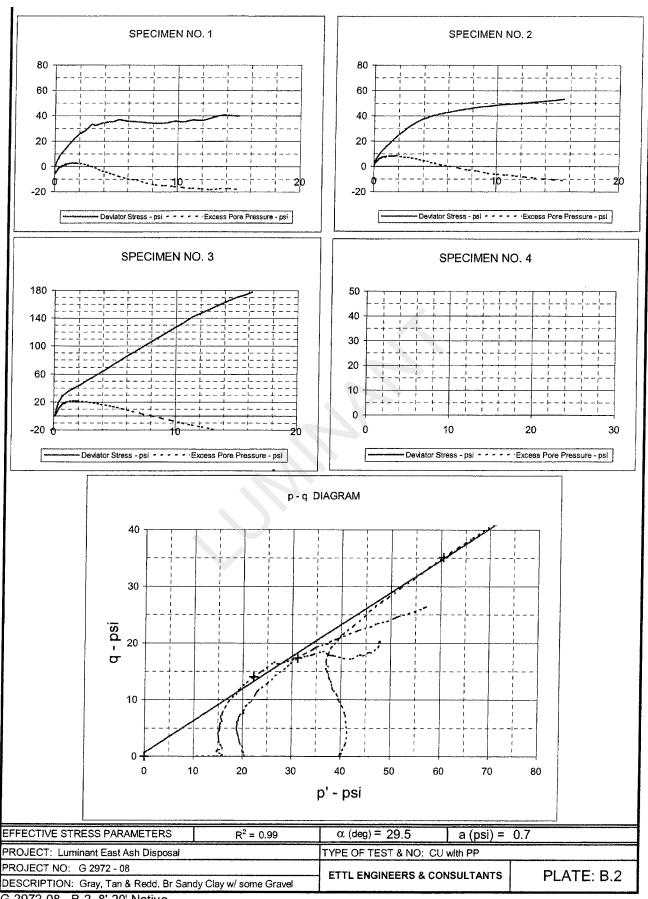
TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Native Sample

DESCRIPTION: Gray, Tan & Redd. Br Sandy Clay w/ some Gravel

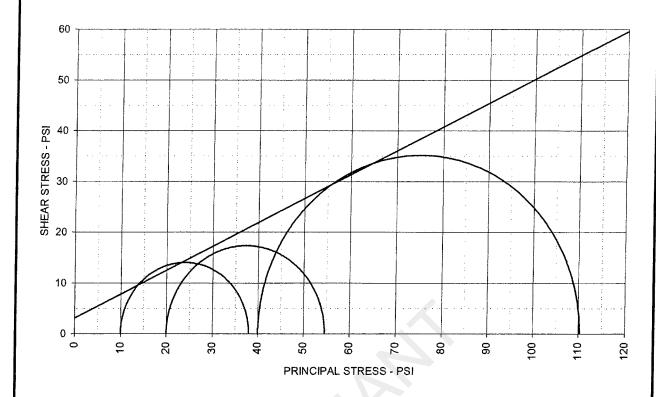
Sampled on Site, B-2 8' to 20' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve PI: Percent -200:

REMARKS: Both Ends & Diameter Trimmed 0-2972-08, B-2, 0'-20' Native + # 4 Sieve PROJECT INFORMATION


PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

CLIENT:


Movember 2008

ETTL ENGINEERS & CONSULTANTS

PLATE: B.1

TRIAXIAL SHEAR TEST REPORT

TOTAL STRESS PARAMETERS
180.00 160.00 120.00 120.00 80.00 0.00 10.00 20.00 0.00 10.0 20.00 AXIAL STRAIN - %

	$\phi = 25.2$	deg	c =	3.1	psi		
	SPECIMEN NO.	1	2	3	4		
		INIT	TAL				
	Moisture Content - %	16.6	16.0	11.8			
\	Dry Density - pcf	112.3	112.1	122.3			
	Diameter - inches	2.08	2.08	2.11			
	Height - Inches	4.25	4.40	4.62			
	AT TEST						
ĺ	Final Moisture - %	19.4	18.1	13.5			
	Dry Density - pcf	112.6	115.3	124.9			
	Calculated Diameter (in.)	2.08	2.07	2.10			
	Height - inches	4.24	4.37	4.58			
	Effect. Cell Pressure - psi	10.0	20.0	40.0			
	Fallure Stress - psi	28.02	34.65	70.28			
	Total Pore Pressure - psi	51.8	56.1	64.6			
	Strain Rate - inches/min.	0.00050	0.00050	0.00050			
	Failure Strain - %	2.4	3.4	4.6			
	σ₁ Failure - psi	38.02	54.65	110.28			
	σ ₃ Failure - psi	10.00	20.00	40.00			

TEST DESCRIPTION

PROJECT INFORMATION

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Native Sample

DESCRIPTION: Gray, Tan & Redd. Br Sandy Clay w/ some Gravel

Sampled on Site, B-2 8' to 20' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve LL: PL: PI: Percent -200:

REMARKS: Both Ends & Diameter Trimmed

Percent -200: + # 4 Sieve PROJECT: Luminant East Ash Disposal

LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08

CLIENT:

Movember 2008

ETTL ENGINEERS & CONSULTANTS

PLATE: B.3

PROJECT INFORMATION

PROJECT: Luminant East Ash Disposal LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08 CLIENT:

Movember 2008

TEST DESCRIPTION

TYPE OF TEST & NO. CU with PP
SAMPLE TYPE: Possible Fill Sample
DESCRIPTION: Tan & Rad Sandy Lean Clay w/ Roots
Sampled on Site, B-1, 3' to 10' deep
ASSUMED SPECIFIC GRAVITY, 2,7 + 40 Sieve
LL: PL: PI: Percent 200'
REMARKS Both Ends & Diameter Trimmed + # 4 Sieve

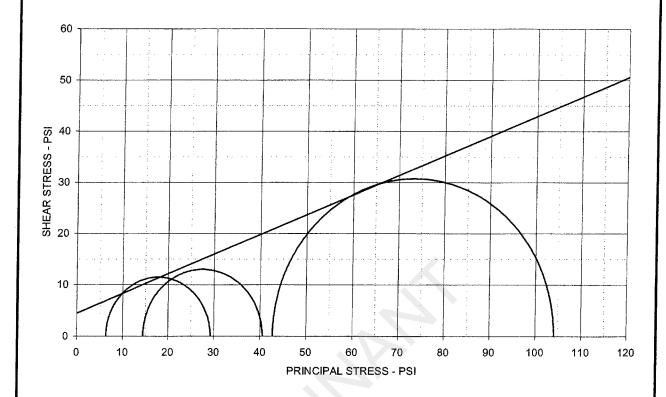
PLATE: B.1

PLATE, B.2

PLATE: B.3

TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999


THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

Number of Specimens = 3

SPECIMEN DATA

SPECIMEN NO. 1

		SPECIMEN	V IVO. I				
	initial	final	Dia	ameter	He	eight	
Moist soil & Tare:	539 30 g	625.10 g	top	<u>2.07</u> in	Ht 1	4.23 in	
Dry soil and Tare :	482.00 g	548.00 g	mid	2.07 in	Ht 2	4 23 in	
Tare:	127.40 g	126.90 g	bot	2:07 in	Ht 3	4.23 in	
Moisture content :	15.15 %	18.31 %	Avg	207 in	Ht4	4.23 in	
Weight:	493.2 g	· · · · · · · · · · · · · · · · · · ·		(W 	Avg Ht	4 2 3 in	
Change in Ht due to sat	uration :	0.02	in	Initial specim	en vol :	203.31 cc	
Change in Ht due to cor	solidation:	-0.00	5 in	At test specir	nen vol :	230 11 CC	
Change in pipet vol due	to consolida	ation: 3.2	cc	Initial dry der	nsity:	113.11 pcf	
Saturation Parameter "	B"= 0	.97		At test dry de	nsity:	1 to 19 pcf	
Strain Rate (in/min) =		Failure Strain %		4 Effective Cel			
σ ₁ ' Failure (psi) =	600-0-760000000000000000000000000000000	σ₁ Failure (psi)	000000000000000000000000000000000000000			ated $v = 0$.	35
σ ₃ ' Failure (psi) =		σ ₃ Failure (psi)	200000000000000000000000000000000000000		sure (psi) =		
∆U =	3,7 T	otal Pore Pressure	= 53.	7 Cell Press	sure (psi) =	60.0	
		SPECIMEN					
	initial	final	1	meter	He	ight	- 1
Moist soil & Tare :	548.00 g	591.00 g	top	2.01 in	Ht 1	<u>4.25</u> in	
Dry soil and Tare :	<u>492.70</u> g	<u>519.10</u> g	mid	in	Ht 2	4.25 in	
Tare :	136:60 g	124.60 g	bot	2:01 in	Ht 3	4.25 in	
Moisture content :	15 53 %	46.23 %	Avg	20 in	Ht4	<u>4 25</u> in	
Weight:	462.2 g				Avg Ht	4.15 in	╝
Change in Ht due to satu		-0.009		Initial specime		220.87 cc	ı
Change in Ht due to con		-0.038		At test specim		210 07 cc	
Change in pipet vol due	(0.000000000000000000000000000000000000		cc	Initial dry den		pcf	
Saturation Parameter "	******	99		At test dry de		115 17 pcf	
Strain Rate (in/min) =	0.0005	Failure Strain % =	NAME OF TAXABLE PARTY.	Effective Cell	• • • • • • • • • • • • • • • • • • • •		
σ ₁ ' Failure (psi) =	40.52	σ ₁ Failure (psi) =	46.90		Estima	ated $v = 0.3$	35
σ₃' Failure (psi) =	14.53	σ ₃ Failure (psi) =	20100	Back Press	ure (psi) =	50.0	
ΔU =	5.5 T	otal Pore Pressure =	55.5	Cell Press	ure (psi) =	70.0	
	ALIO COLO COLO COLO COLO COLO COLO COLO C		300000000000000000000000000000000000000	sc:	,	200000000000000000000000000000000000000	
		SPECIMEN	NO. 3				
	initial	final	Diar	neter	Hei	ght	
Moist soil & Tare :	431.00 g	<u>528.40</u> g	top	<u>2.10</u> in	Ht 1	4.28 in	ı
Dry soil and Tare :	385.90 g	558.80 g	mid	2.10 in	Ht 2	4.28 in	
Tare :	105.00 g	119.40 g	bot	2.10 in	Ht 3	4.28 in	
Moisture content :	10.110 %	15 54 %	Avg	7 10 in	Ht4	4.28 in	
Weight:	510.5 g				Avg Ht	42£ in	
Change in Ht due to satu		-0.017	-	Initial specime		Z4Z #1 CC	
Change in Ht due to cons		-0.039	-	At test specim	en vol : 🚪	cc	
Change in pipet vol due t			cc	Initial dry dens	sity:	pcf	
Saturation Parameter " E	3"= 0.9	97		At test dry den		pcf	011X
Strain Rate (in/min) =	0.0005	Failure Strain % =	3.0	Effective Cell	Pressure (p	si) =	
σ ₁ ' Failure (psi) =	104.13	σ₁ Failure (psi) =	101.42		Estima	ted $v = 0.3$	5
σ ₃ ' Failure (psi) =	42.71	σ ₃ Failure (psi) =	40 DO	Back Pressu	ıre (psi) =🎚	50.0	2000
ΔÚ =		otal Pore Pressure =	000000000000000000000000000000000000000	1	355	90.0	
	***************************************		200000000000000000000000000000000000000	:	·· - (F1) 🛞	000000000000000000000000000000000000000	

EFFECTIVE STRESS PARAMETERS	φ'= 21.0	deg	c' =	4.5	psi
	SPECIMEN NO.	1	2	3	4
120.00		TINI	TAL		
	Moisture Content - %	16.2	15.5	16.1	
100.00	Dry Density - pcf	113.6	113.1	113.3	ļ
82	Diameter - inches	2.07	2.01	2.10	İ
·	Height - inches	4.23	4.25	4.28	!
40.00 S 80.00 S 80.00		AT TI	EST		
60.00	Final Moisture - %	18.3	18.2	15.8	
	Dry Density - pcf	115.2	115.3	115.5	ļ
40.00	Calculated Diameter (in.)	2.08	1.99	2.08	
	Height - inches	4.24	4.21	4.22	
20.00	Effect. Cell Pressure - psi	10.0	20.0	40.0	
20.00	Failure Stress - psi	22.94	25.99	61.42	
	Total Pore Pressure - psi	53.7	55.5	47.3	
0.00	Strain Rate - inches/min.	0.00050	0.00050	0.00050	
	Failure Strain - %	1.4	3.0	3.0	
AXIAL STRAIN - %	σ ₁ ' Failure - psi	29.29	40.52	104.13	
	σ ₃ ' Fallure - psi	6.35	14.53	42.71	
TEST DESCRIPTION		PROJEC'	T INFORM	MATION	

TYPE OF TEST & NO: CU with PP SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan & Red Sandy Lean Clay w/ Roots

Sampled on Site, B-1 3' to 10' deep

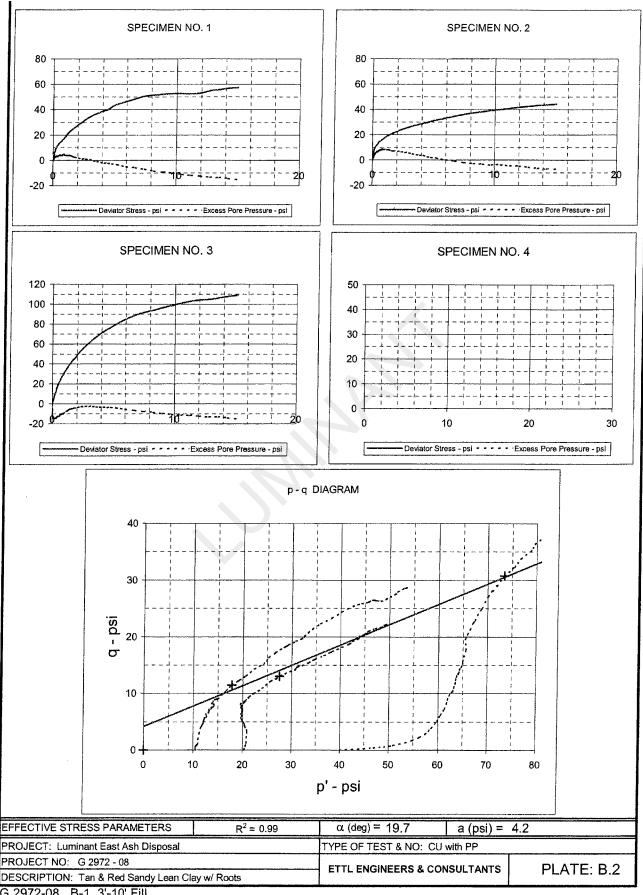
ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

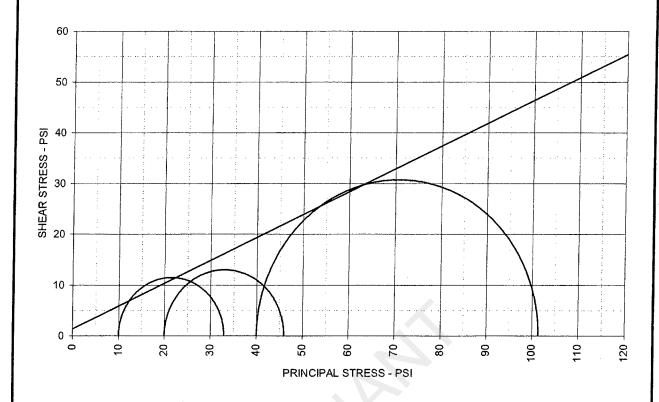
LL: PL: Pi: Percent -200:

REMARKS: Both Ends & Diameter Trimmed C-2972-00, D-1, 3'-10' Fill

+ # 4 Sieve

PROJECT: Luminant East Ash Disposal


LOCATION: Rusk County, Texas PROJECT NO: G 2972 - 08


CLIENT:

Movember 2008

ETTL ENGINEERS & CONSULTANTS

PLATE: B.1

TOTAL STRESS PARAMETERS	φ =	24.2	deg	c =	1.4	psi
	SPECIME	N NO.	1	2	3	4
120.00			INI	ΓIAL		
	Moisture Con	tent - %	16.2	15.5	16.1	
100.00	Dry Density -	pcf	113.6	113.1	113.3	
8	Diameter - inc	hes	2.07	2.01	2.10	
7	Height - inche	es	4.23	4.25	4.28	
00.00 STRESS			AT T	EST		
60.00	Final Moisture	e - %	18.3	18.2	15.8	
¥ 55.55	Dry Density - pcf		115.2	115.3	115.5	
₹ 40.00	Calculated Dia	ameter (in.)	2.08	1.99	2.08	
\$ 40.00	Height - inche	s	4.24	4.21	4.22	
	Effect. Cell Pr	essure - psi	10.0	20.0	40.0	
20.00	Failure Stress	- psi	22.94	25.99	61.42	
	Total Pore Pre	essure - psi	53.7	55.5	47.3	
0.00	Strain Rate - in	nches/min.	0.00050	0.00050	0.00050	
0.0 10.0 20.0	Fallure Strain	- %	1.4	3.0	3.0	
AXIAL STRAIN - %	σ₁ Failure - ps	si	32.94	45.99	101.42	
	σ ₃ Fallure - ps	i	10.00	20.00	40.00	
TEST DESCRIPTION			PROJEC	T INFOR	MATION	

PROJECT: Luminant East Ash Disposal

ETTL ENGINEERS & CONSULTANTS

PLATE: B.3

LOCATION: Rusk County, Texas

PROJECT NO: G 2972 - 08

CLIENT:

Movember 2008

TYPE OF TEST & NO: CU with PP

Sampled on Site, B-1 3' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7

REMARKS: Both Ends & Diameter Trimmed

SAMPLE TYPE: Possible Fill Sample

DESCRIPTION: Tan & Red Sandy Lean Clay w/ Roots

+ 40 Sieve

Percent -200:

+ # 4 Sieve

PERMANENT DISPOSAL POND - 5

PROJECT: Luminant Martin Lake, PDP 1-3

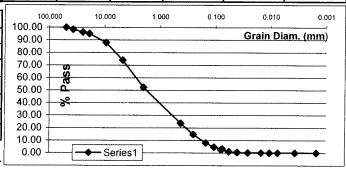
CLIENT: TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.:

RESULTS

DATE SAMPLED: February 2008

Grain Diameter SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 47.69 LOCATION: MLSES % Retain +0.05 mm 99.26 SAMPLE No.: % Passing 0.05 to 2.0 mm 51.57


DESCRIPTION: Gray & Dark Gray Bottom Ash % Passing 0.002 to 0.05 mm 0.72 M. Thompson **TECHNICIAN:** % Passing > 0.002 mm 0.02 DATE: 04/15/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	54.66	76.31	0.425	23.69
WEIGHT OF SAMPLE (AIR DRY)	100.00	Tare Wt	29.89	60	71.63	85.20	0.250	14.80
WEIGHT OF SAMPLE (OVEN DRY)	99.90	Wet Wt.	68.94	100	84.45	91.91	0.150	8.09
PERCENT RETAINED ON # 10	47.69	Dry Wt	68.90	140	90.93	95.30	0.105	4.70
SPECIFIC GRAVITY	2.563	мс	0.1025%	200	93.54	96.67	0.075	3.33

PLINKOMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
5.7	11.0	5.3	15.5	0.0141	1.02	0.5	0.0787	2.82
5.7	8.0	2.3	16	0.0141	1.02	1	0.0566	1.21
5.7	6.8	1.1	16.1	0.0141	1.02	2	0.0401	0.57
5.7	6.2	0.5	16.3	0.0141	1.02	5	0.0255	0.25
5.7	6.0	0.3	16.3	0.0141	1.02	15	0.0147	0.15
5.7	5.8	0.1	16.3	0.0141	1.02	30	0.0104	0.04
5.7	5.8	0.1	16.3	0.0141	1.02	60	0.0074	0.04
5.7	5.8	0.1	16.3	0.0141	1.02	250	0.0036	0.04
5.6	5.6	0.0	16.3	0.0140	1.02	1440	0.0015	0.02
	5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7	5.7 11.0 5.7 8.0 5.7 6.8 5.7 6.2 5.7 6.0 5.7 5.8 5.7 5.8 5.7 5.8 5.7 5.8	5.7 11.0 5.3 5.7 8.0 2.3 5.7 6.8 1.1 5.7 6.2 0.5 5.7 6.0 0.3 5.7 5.8 0.1 5.7 5.8 0.1 5.7 5.8 0.1 5.7 5.8 0.1	5.7 11.0 5.3 15.5 5.7 8.0 2.3 16 5.7 6.8 1.1 16.1 5.7 6.2 0.5 16.3 5.7 6.0 0.3 16.3 5.7 5.8 0.1 16.3 5.7 5.8 0.1 16.3 5.7 5.8 0.1 16.3 5.7 5.8 0.1 16.3	5.7 11.0 5.3 15.5 0.0141 5.7 8.0 2.3 16 0.0141 5.7 6.8 1.1 16.1 0.0141 5.7 6.2 0.5 16.3 0.0141 5.7 6.0 0.3 16.3 0.0141 5.7 5.8 0.1 16.3 0.0141 5.7 5.8 0.1 16.3 0.0141 5.7 5.8 0.1 16.3 0.0141 5.7 5.8 0.1 16.3 0.0141	5.7 11.0 5.3 15.5 0.0141 1.02 5.7 8.0 2.3 16 0.0141 1.02 5.7 6.8 1.1 16.1 0.0141 1.02 5.7 6.2 0.5 16.3 0.0141 1.02 5.7 6.0 0.3 16.3 0.0141 1.02 5.7 5.8 0.1 16.3 0.0141 1.02 5.7 5.8 0.1 16.3 0.0141 1.02 5.7 5.8 0.1 16.3 0.0141 1.02 5.7 5.8 0.1 16.3 0.0141 1.02	5.7 11.0 5.3 15.5 0.0141 1.02 0.5 5.7 8.0 2.3 16 0.0141 1.02 1 5.7 6.8 1.1 16.1 0.0141 1.02 2 5.7 6.2 0.5 16.3 0.0141 1.02 5 5.7 6.0 0.3 16.3 0.0141 1.02 15 5.7 5.8 0.1 16.3 0.0141 1.02 30 5.7 5.8 0.1 16.3 0.0141 1.02 60 5.7 5.8 0.1 16.3 0.0141 1.02 250	5.7 11.0 5.3 15.5 0.0141 1.02 0.5 0.0787 5.7 8.0 2.3 16 0.0141 1.02 1 0.0566 5.7 6.8 1.1 16.1 0.0141 1.02 2 0.0401 5.7 6.2 0.5 16.3 0.0141 1.02 5 0.0255 5.7 6.0 0.3 16.3 0.0141 1.02 15 0.0147 5.7 5.8 0.1 16.3 0.0141 1.02 30 0.0104 5.7 5.8 0.1 16.3 0.0141 1.02 60 0.0074 5.7 5.8 0.1 16.3 0.0141 1.02 250 0.0036

SPECIFIC GRAVIT	ΓY	BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	100	10	188.06	686.13	22.5	99.90	747.18	21.5	2.563

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	2"	0.00	100.00
	1-1/2"	89.00	98.47
Air Dry Start Wt.:	1"	215.04	96.31
5836.8	3/4"	288.14	95.06
Dry Start Wt.:	3/8"	709.78	87.83
5830.82	No 4	1510.97	74.09
	No 10	2780.46	52.31

PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.:

DATE SAMPLED: February 2008 Grain Diameter

 SAMPLED BY:
 ETTL Drill Crew
 % Retain
 +2.0 mm
 0.08

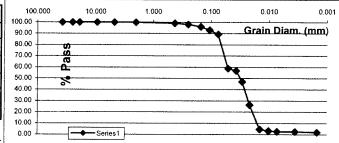
 LOCATION:
 B-9, 1'-3'
 % Retain
 +0.05 mm
 41.35

 SAMPLE No.:
 % Passing
 0.05 to 2.0 mm
 41.27

 DESCRIPTION:
 Gray Ash (Cementing)
 % Passing
 0.002 to 0.05 mm
 56.63

 DESCRIPTION:
 Gray Ash (Cementing)
 % Passing
 0.002 to 0.05 mm
 56.63

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 mm
 2.02


 DATE:
 03/14/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
		_	Mc Hydrom	40	0.92	1.00	0.425	99.00
WEIGHT OF SAMPLE (AIR DRY)	100.00	Tare Wt	29.50	60	1.92	2.00	0.250	98.00
WEIGHT OF SAMPLE (OVEN DRY)	99.73	Wet Wt.	62.41	100	3.90	3.99	0.150	96.01
PERCENT RETAINED ON # 10	0.08	Dry Wt	62.32	140	7.07	7.16	0.105	92.84
SPECIFIC GRAVITY	2.761	мс	0.2742%	200	10.67	10.77	0.075	89.23

5.2 5.2 5.2	65.0 63.0	59.8 57.8	FACTOR 6.6 7	0.0138 0.0138	0.98 0.98	(MIN) 0.5	(MM) 0.0502	PASSING 58.67
5.2	63.0		6.6 7			0.5		
		57.8	7	0.0138	ا مما	4	1	
5.2	52 A			0.0100	0.90		0.0365	56.71
	53.0	47.8	8.6	0.0138	0.98	2	0.0286	46.89
5.2	32.0	26.8	12	0.0138	0.98	5	0.0214	26.27
5.4	10.0	4.6	15.6	0.0140	0.98	15	0.0142	4.51
5.4	8.5	3.1	15.8	0.0140	0.98	30	0.0101	3.04
5.4	8.0	2.6	16	0.0140	0.98	60	0.0072	2.55
5.6	8.0	2.4	16	0.0140	0.98	250	0.0035	2.39
5.6	7.5	1.9	16.1	0.0140	0.98	1440	0.0015	1.90
	5.4 5.4 5.4 5.6	5.4 10.0 5.4 8.5 5.4 8.0 5.6 8.0	5.4 10.0 5.4 8.5 5.4 8.0 5.6 8.0 2.6 2.4	5.4 10.0 4.6 15.6 5.4 8.5 3.1 15.8 5.4 8.0 2.6 16 5.6 8.0 2.4 16	5.4 10.0 4.6 15.6 0.0140 5.4 8.5 3.1 15.8 0.0140 5.4 8.0 2.6 16 0.0140 5.6 8.0 2.4 16 0.0140	5.4 10.0 4.6 15.6 0.0140 0.98 5.4 8.5 3.1 15.8 0.0140 0.98 5.4 8.0 2.6 16 0.0140 0.98 5.6 8.0 2.4 16 0.0140 0.98	5.4 10.0 4.6 15.6 0.0140 0.98 15 5.4 8.5 3.1 15.8 0.0140 0.98 30 5.4 8.0 2.6 16 0.0140 0.98 60 5.6 8.0 2.4 16 0.0140 0.98 250	5.4 10.0 4.6 15.6 0.0140 0.98 15 0.0142 5.4 8.5 3.1 15.8 0.0140 0.98 30 0.0101 5.4 8.0 2.6 16 0.0140 0.98 60 0.0072 5.6 8.0 2.4 16 0.0140 0.98 250 0.0035

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	50	7	179.97	678.12	22.5	49.86	709.93	22.5	2.761

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
334.9	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	0.00	100.00
333.98	No 4	0.00	100.00
	No 10	0.26	99.92

PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

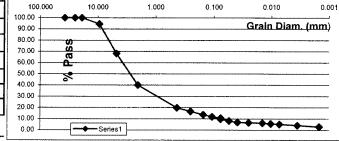
 JOB No.:
 G 2810 - 08

REPORT No.:

DATE SAMPLED: February 2008 Grain Diameter

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 59.89 LOCATION: B-7, 13'-15' % Retain +0.05 mm 92.28 SAMPLE No.: % Passing 0.05 to 2.0 mm 32.39 **DESCRIPTION:** Gray Ash % Passing 0.002 to 0.05 mm 4.63

TECHNICIAN: H. Walka % Passing 0.002 to 0.001 mm 3.09


DATE: 03/14/08

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
		N	/Ic Hydrom	40	25.25	80.22	0.425	19.78
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt	30.03	60	29.25	83.44	0.250	16.56
WEIGHT OF SAMPLE (OVEN DRY)	49.81	Wet Wt.	45.86	100	32.74	86.25	0.150	13.75
PERCENT RETAINED ON # 10	59.89	Dry Wt	45.80	140	35.11	88.16	0.105	11.84
SPECIFIC GRAVITY	2.655	мс	0.3805%	200	36.67	89.42	0.075	10.58

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
22.0	5.6	17.5	11.9	14.5	0.0140	1.00	0.5	0.0752	9.61
22.0	5.6	15.5	9.9	14.8	0.0140	1.00	1	0.0537	8.00
22.0	5.6	14.0	8.4	15	0.0140	1.00	2	0.0383	6.79
22.0	5.6	13.5	7.9	15.2	0.0140	1.00	5	0.0244	6.39
22.0	5.6	13.0	7.4	15.2	0.0140	1.00	15	0.0141	5.99
21.5	5.7	12.5	6.8	15.3	0.0141	1.00	30	0.0101	5.46
21.5	5.7	12.0	6.3	15.3	0.0141	1.00	60	0.0071	5.05
22.0	5.6	10.5	4.9	15.6	0.0140	1.00	250	0.0035	3.97
22.0	5.6	9.0	3.4	15.8	0.0140	1.00	1440	0.0015	2.77

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	25	4	179.25	677.26	22.5	24.91	692.79	22.5	2.655

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
243.3	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	13.45	94.47
242.38	No 4	77.42	68.18
	No 10	145.71	40.11

PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

REPORT No.:

DATE SAMPLED: February 2008 Grain Diameter

 SAMPLED BY:
 ETTL Drill Crew
 % Retain
 +2.0 mm
 10.97

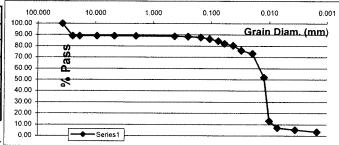
 LOCATION:
 B-6, 18'-20'
 % Retain
 +0.05 mm
 18.74

 SAMPLE No.:
 % Passing
 0.05 to 2.0 mm
 7.77

 DESCRIPTION:
 Tap Ash
 % Passing
 0.003 to 0.05 mm
 77.70

 DESCRIPTION:
 Tan Ash
 % Passing
 0.002 to 0.05 mm
 77.39

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 mm
 3.87


 DATE:
 03/14/08
 3/14/08
 0.002 mm
 3.87

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
		_	Mc Hydrom	40	0.26	11.44	0.425	88.56
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt	29.86	60	0.42	11.72	0.250	88.28
WEIGHT OF SAMPLE (OVEN DRY)	49.81	Wet Wt.	51.33	100	0.78	12.36	0.150	87.64
PERCENT RETAINED ON # 10	10.97	Dry Wt	51.25	140	1.61	13.85	0.105	86.15
SPECIFIC GRAVITY	2.732	MC	0.3740%	200	2.62	15.65	0.075	84.35

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
22.0	5.6	52.0	46.4	8.8	0.0140	0.99	0.5	0.0586	82.16
22.0	5.6	51.0	45.4	8.9	0.0140	0.99	1	0.0417	80.39
22.0	5.6	48.5	42.9	9.4	0.0140	0.99	2	0.0303	75.97
22.0	5.6	47.0	41.4	9.6	0.0140	0.99	5	0.0194	73.31
22.0	5.6	35.0	29.4	11.5	0.0140	0.99	15	0.0122	52.08
22.0	5.6	13.0	7.4	15.2	0.0140	0.99	30	0.0099	13.15
22.0	5.6	9.5	3.9	15.8	0.0140	0.99	60	0.0072	6.96
22.0	5.6	8.5	2.9	16	0.0140	0.99	250	0.0035	5.19
22.0	5.6	7.5	1.9	16.1	0.0140	0.99	1440	0.0015	3.42
22.0	5.6	8.5	2.9	16	0.0140	0.99	250		0.0035

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	50	3	179.93	678.11	22.5	49.81	709.70	22.5	2.732

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	28.83	89.03
262.8	3/4"	28.83	89.03
Dry Start Wt.:	3/8"	28.83	89.03
261.82	No 4	28.83	89.03
	No 10	28.83	89.03

PROJECT: Luminant Martin Lake, PDP 1-3

CLIENT: TXU
CONTRACTOR: not given
JOB No.: G 2810 - 08

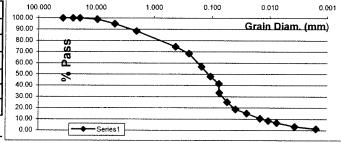
REPORT No.: RESULTS

DATE SAMPLED: February 2008 Grain Diameter

SAMPLED BY: ETTL Drill Crew % Retain 11.60 +2.0 mm LOCATION: B-3, 5'-7' % Retain +0.05 mm 76.50 SAMPLE No.: % Passing 0.05 to 2.0 mm 64.91 **DESCRIPTION:** Black Ash

 DESCRIPTION:
 Black Ash
 % Passing
 0.002 to 0.05 mm
 21.88

 TECHNICIAN:
 H. Walka
 % Passing
 > 0.002 mm
 1.62


 DATE:
 03/06/08
 03/06/08
 0.002 mm
 <td

				SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
			Mc Hydrom	40	7.81	25.54	0.425	74.46
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt	29.43	60	11.21	31.61	0.250	68.39
WEIGHT OF SAMPLE (OVEN DRY)	49.53	Wet Wt.	65.41	100	17.82	43.41	0.150	56.59
PERCENT RETAINED ON # 10	11.60	Dry Wt	65.07	140	22.64	52.01	0.105	47.99
SPECIFIC GRAVITY	2.561	MC	0.9540%	200	26.25	58.45	0.075	41.55

EMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
20.0	6.2	24.5	18.3	13.3	0.0143	1.02	0.5	0.0738	33.31
20.0	6.2	20.0	13.8	14.2	0.0143	1.02	1	0.0539	25.11
20.0	6.2	16.5	10.3	14.7	0.0143	1.02	2	0.0388	18.74
20.0	6.2	14.5	8.3	15	0.0143	1.02	5	0.0248	15.10
20.0	6.2	12.0	5.8	15.5	0.0143	1.02	15	0.0145	10.55
19.5	6.4	11.0	4.6	15.6	0.0145	1.02	30	0.0104	8.44
19.5	6.4	10.0	3.6	15.8	0.0145	1.02	60	0.0074	6.62
20.0	6.2	8.0	1.8	16.1	0.0143	1.02	250	0.0036	3.27
19.5	6.4	7.0	0.6	16.3	0.0145	1.02	1440	0.0015	1.15
						1			

SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr) 10)	7	179.97	678.12	22.5	99.06	738.67	21.0	2.561

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
335.3	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	3.42	98.98
332.13	No 4	17.17	94.88
	No 10	38.89	88.40

PROJECT: Luminant Martin Lake, PDP 1-3

CLIENT: TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.:

RESULTS

DATE SAMPLED: February 2008

SAMPLED BY: ETTL Drill Crew LOCATION: B-2, 23'-25'

SAMPLE No.:

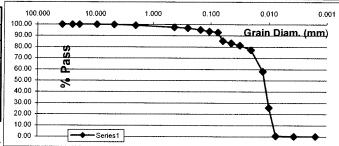
DESCRIPTION:

Light Gray & Black Ash **TECHNICIAN:** H. Walka DATE: 03/06/08

Grain Diameter

% Retain +2.0 mm 0.76 % Retain +0.05 mm 16.00 % Passing 0.05 to 2.0 mm 15.24

% Passing 0.002 to 0.05 mm 83.90 % Passing > 0.002 mm 0.09


WEIGHT OF SAMPLE (AIR DRY)	50.00
WEIGHT OF SAMPLE (OVEN DRY)	49.16
PERCENT RETAINED ON # 10	0.76
SPECIFIC GRAVITY	2.675

		SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
	Mc Hydrom	40	0.89	2.56	0.425	97.44
Tare Wt	29.91	60	1.22	3.22	0.250	96.78
Wet Wt.	55.02	100	2.01	4.82	0.150	95.18
Dry Wt	54.60	140	2.67	6.15	0.105	93.85
MC	1.7011%	200	3.07	6.96	0.075	93.04

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING	
20.0	6.2	48.5	42.3	9.4	0.0143	1.00	0.5	0.0620	85.37
20.0	6.2	47.5	41.3	9.6	0.0143	1.00	1	0.0443	83.35
20.0	6.2	46.5	40.3	9.7	0.0143	1.00	2	0.0315	81.33
20.0	6.2	44.5	38.3	10.1	0.0143	1.00	5	0.0203	77.30
20.0	6.2	35.0	28.8	11.7	0.0143	1.00	15	0.0126	58.12
20.0	6.2	19.0	12.8	14.3	0.0143	1.00	30	0.0099	25.83
20.0	6.2	6.5	0.3	16.3	0.0143	1.00	60	0.0075	0.59
20.0	6.2	6.3	0.1	16.3	0.0143	1.00	250	0.0037	0.19
19.5	6.4	6.4	0.0	16.3	0.0145	1.00	1440	0.0015	0.07

SPECIFIC GRAVIT	ΓΥ	BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	50	4	179.25	677.26	22.5	49.16	708.22	21.0	2.675

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
144.3	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	0.00	100.00
141.89	No 4	0.10	99.93
	No 10	1.10	99.24

PROJECT: Luminant Martin Lake, PDP 1-3

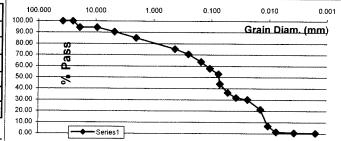
CLIENT: TXU CONTRACTOR: not given JOB No.: G 2810 - 08

REPORT No.: RESULTS

DATE SAMPLED: February 2008 Grain Diameter

SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 14.96 LOCATION: B-1, 18'-20' % Retain +0.05 mm 64.42 SAMPLE No. : % Passing 0.05 to 2.0 mm 49.46 **DESCRIPTION:**

Black, Tan & Gray Ash % Passing 0.002 to 0.05 mm 35.29 **TECHNICIAN:** H. Walka % Passing > 0.002 mm 0.29


DATE: 03/06/08 SIEVE WEIGHT %RETAIN GRAIN DIA %PASSING

		Mc Hydro	n 40	5.76	24.90	0.425	75.10
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt 29.29	60	8.38	29.42	0.250	70.58
WEIGHT OF SAMPLE (OVEN DRY)	49.29	Wet Wt. 59.40	100	12.31	36.20	0.150	63.80
PERCENT RETAINED ON # 10	14.96	Dry Wt 58.97	140	15.78	42.19	0.105	57.81
SPECIFIC GRAVITY	2.608	MC 1.4488%	200	18.60	47.05	0.075	52.95

TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
	CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING
20.0	6.2	31.5	25.3	12.2	0.0143	1.01	0.5	0.0707	44.08
20.0	6.2	27.0	20.8	13	0.0143	1.01	1	0.0516	36.24
20.0	6.2	24.5	18.3	13.3	0.0143	1.01	2	0.0369	31.88
20.0	6.2	23.5	17.3	13.5	0.0143	1.01	5	0.0235	30.14
20.0	6.2	18.5	12.3	14.3	0.0143	1.01	15	0.0140	21.43
20.0	6.2	10.0	3.8	15.8	0.0143	1.01	30	0.0104	6.61
20.0	6.2	7.0	0.8	16.3	0.0143	1.01	60	0.0075	1.38
20.0	6.2	6.5	0.3	16.3	0.0143	1.01	250	0.0037	0.51
19.5	6.4	6.5	0.1	16.3	0.0145	1.01	1440	0.0015	0.23
	1]		1	

SPECIFIC GRAVI	TY	BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Water	WaterTemp	Specif. Grav
Air dry Sample(gr)	100	3	179.93	678.11	22.5	98.57	739.11	20.5	2.608

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
268.4	3/4"	15.10	94.37
Dry Start Wt.:	3/8"	15.10	94.37
264.57	No 4	25.58	90.47
	No 10	40.15	85.04

PROJECT: Luminant Martin Lake, PDP 1-3

 CLIENT:
 TXU

 CONTRACTOR:
 not given

 JOB No.:
 G 2810 - 08

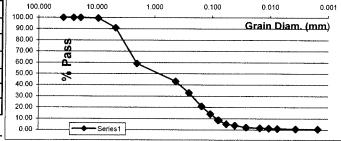
REPORT No.:

DATE SAMPLED: February 2008 Grain Diameter

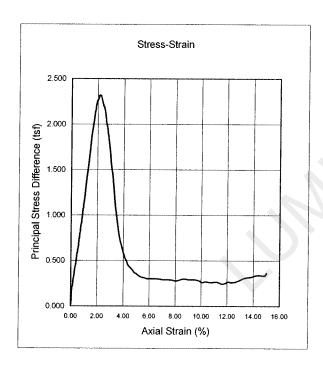
SAMPLED BY: ETTL Drill Crew % Retain +2.0 mm 41.02 LOCATION: MLSES % Retain +0.05 mm 95.89 SAMPLE No.: % Passing 0.05 to 2.0 mm 54.87 DESCRIPTION: Tan & Gray Econimizet Ash % Passing 0.002 to 0.05 mm

 DESCRIPTION:
 Tan & Gray Econimizet Ash
 % Passing
 0.002 to 0.05 mm
 3.55

 TECHNICIAN:
 M. Thompson
 % Passing
 > 0.002 mm
 0.55


 DATE:
 04/15/08

			SIEVE	WEIGHT	%RETAIN	GRAIN DIA	%PASSING
		Mc Hydron	ղ 40	13.34	56.76	0.425	43.24
WEIGHT OF SAMPLE (AIR DRY)	50.00	Tare Wt 30.27	60	22.12	67.12	0.250	32.88
WEIGHT OF SAMPLE (OVEN DRY)	49.98	Wet Wt. 62.43	100	32.26	79.09	0.150	20.91
PERCENT RETAINED ON # 10	41.02	Dry Wt 62.42	140	38.01	85.87	0.105	14.13
SPECIFIC GRAVITY	2.670	MC 0.0311%	200	42.66	91.36	0.075	8.64


TEMP (C)	HYDROMETER	HYDROMETER	CORRECTED	L.Hydrom	K. Diam.	a. SP.GR.	TIME	GRAIN DIA	% SOIL
CORRECTION	READING	READING	FACTOR	FACTOR	FACTOR	(MIN)	(MM)	PASSING	
21.5	5.7	13.0	7.3	15.2	0.0141	1.00	0.5	0.0780	8.58
21.5	5.7	10.0	4.3	15.6	0.0141	1.00	1	0.0558	5.04
21.5	5.7	9.0	3.3	15.8	0.0141	1.00	2	0.0397	3.86
21.5	5.7	7.5	1.8	16.1	0.0141	1.00	5	0.0254	2.09
21.5	5.7	7.0	1.3	16.1	0.0141	1.00	15	0.0146	1.50
21.5	5.7	6.8	1.1	16.1	0.0141	1.00	30	0.0104	1.27
21.5	5.7	6.5	0.8	16.3	0.0141	1.00	60	0.0074	0.91
21.5	5.7	6.3	0.6	16.3	0.0141	1.00	250	0.0036	0.68
22.0	5.6	6.0	0.4	16.3	0.0140	1.00	1440	0.0015	0.51
		1							

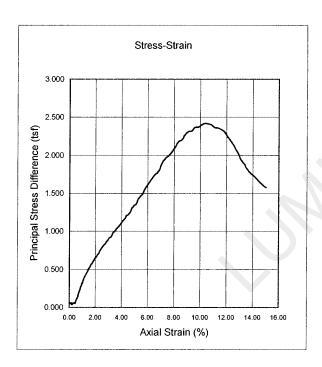
SPECIFIC GRAVITY		BOTTLE#	Bottle Wt	Bott & Water	WaterTemp	Corr.Soil	Bott, S & Wate	WaterTemp	Specif. Grav
Air dry Sample(gr) 1	00	7	179.97	678.12	22.5	99.97	740.78	21.5	2.670

	Sieve Size	Grams Retain	% Pass
Sieve % Pass	1-1/2"	0.00	100.00
Air Dry Start Wt.:	1"	0.00	100.00
2182.9	3/4"	0.00	100.00
Dry Start Wt.:	3/8"	12.53	99.43
2182.22	No 4	200.01	90.83
	No 10	895.12	58.98

Project: Luminant Martin Lake: PDP 1-3

1/2 Stress (KSF)	2.321
Strain at 1/2 Stress (%)	0.99
Type of Specimen:	Native

Remarks:	
----------	--


Project No.:	G 2810-08	
Boring No.:	B-7	
Depth, ft.:	5'-7'	
Material: Black Ash w	ith Gravel	
Initial Height	5.706	Inches
Initial Diameter	2.767	Inches
Moisture Content:	22.9%	%
Dry Density:	97.5	lbs/cu ft
Specific Gravity (Assumed)	2.670	
Volume of Solids:	0.585	
Volume of Voids	0.415	
Void Ratio:	0.709	
Confining Pressure:	6.1	PSI
Pocket Penetr. Reading:	4.5	
Torvane (T)		
Rate of Strain: (%/ min)	1.0%	
Peak Strain:	2.1	%
Max Stress:	2.32	TSF
Date:	3/11/2008	

 Secant Modulus (KSF) @ 1/2 Peak Stress
 234

 RQD Value:
 100%

Angle of Fracture in Degrees: 65

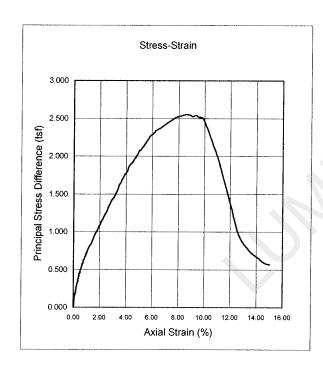
Project: TXU PDP: Martin Lake, TX

 1/2 Stress (KSF)
 2.416

 Strain at 1/2 Stress (%)
 3.94

 Type of Specimen:
 Native

Remarks: undefined fracture


Project No.:	G 2810-08	
Boring No.:	B-4	
Depth, ft.:	13'-15'	
Material: Red & Gray Lan	ninated Lean C	Clay
Initial Height	3.613	Inches
Initial Diameter	2.667	Inches
Moisture Content:	22.3%	%
Dry Density:	99.4	lbs/cu ft
Specific Gravity (Assumed)	2.670	
Volume of Solids:	0.596	
Volume of Voids	0.404	
Void Ratio:	0.677	
Confining Pressure:	13	PSI
Pocket Penetr. Reading:	3.5	
Torvane (T)		
Rate of Strain: (%/ min)	1.0%	
Peak Strain:	10.3	%
Max Stress:	2.42	TSF
Date:	5/12/2008	

Secant Modulus (KSF) @ 1/2 Peak Stress 61

RQD Value: 100%

Angle of Fracture in Degrees: N/A

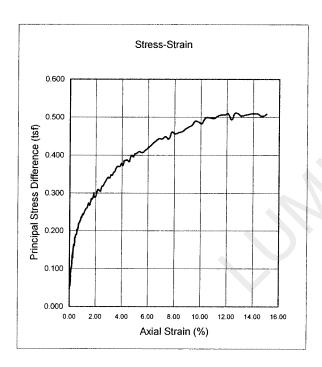
Project: Luminant Martin Lake: PDP 1-3

 1/2 Stress (KSF)
 2.552

 Strain at 1/2 Stress (%)
 2.54

 Type of Specimen:
 Native

 Remarks:
 Native

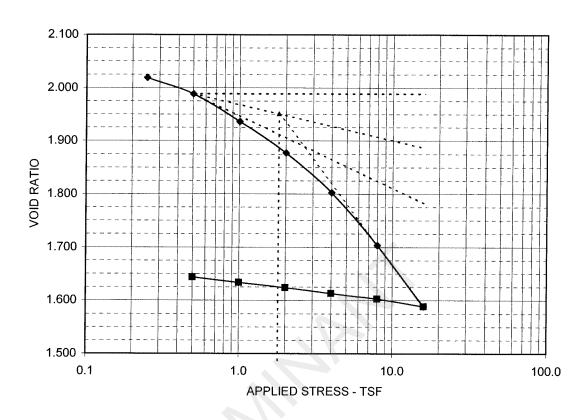

Project No.: G 2810-08 Boring No.: B-4 13'-15' Depth, ft.: Material: Light Gray & Red Slity Clayey Sand w/ Ferric seams Initial Height 5.688 Inches Initial Diameter 2.75 Inches **Moisture Content:** 21.5% % Dry Density: 104.6 lbs/cu ft Specific Gravity (Assumed) 2.670 Volume of Solids: 0.628 Volume of Voids 0.372 0.593 Void Ratio: Confining Pressure: 13 PSI Pocket Penetr. Reading: 3.9 Torvane (T) 1.138 Rate of Strain: (%/ min) 1.0% Peak Strain: 8.6 % Max Stress: 2.55 **TSF** Date: 4/11/2008

Secant Modulus (KSF) @ 1/2 Peak Stress 100

RQD Value: 100%

Angle of Break in Degrees: 60

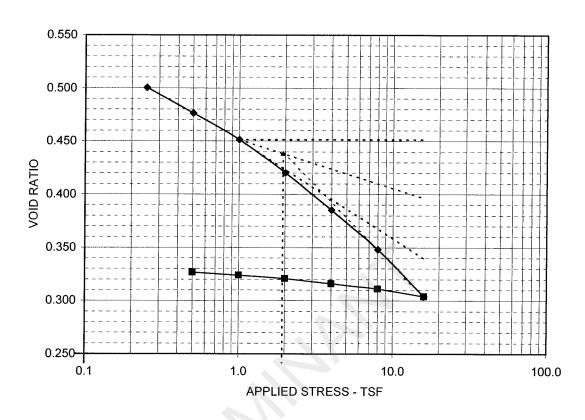
Project: Luminant Martin Lake: PDP 1-3


1/2 Stress (KSF)		0.510
Strain at 1/2 Stress (%)		1.20
Type of Specimen:	Native	

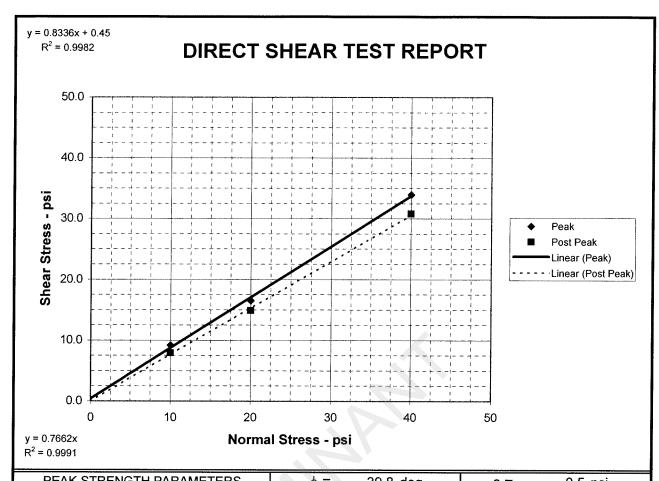
Remarks: Not able to find a well defined fracture

Project No.:		G 2810-08	
Boring No.:		B-7	
Depth, ft.:		23'-25'	
Material:	Black, Red,	Tan, & Gray C	clay w/ gravel
Initial Height		5.686	Inches
Initial Diameter		2.717	Inches
Moisture Content:		21.0%	%
Dry Density:		103.9	lbs/cu ft
Specific Gravity (Assun	ned)	2.670	
Volume of Solids:		0.624	
Volume of Voids		0.376	
Void Ratio:		0.603	
Confining Pressure:		21.7	PSI
Pocket Penetr. Reading):		
Torvane (T)			
Rate of Strain: (%/ min)		1.0%	
Peak Strain:		12.8	%
Max Stress:		0.51	TSF
Date:		3/11/2008	

Secant Modulus (KSF) @ 1/2 Peak Stress	43
RQD Value: 100%	_
Angle of Break in Degrees:	53


CONSOLIDATION TEST REPORT ASTM D 2435

C _c =	0.381	C _r =	0.033	$e_0 = 2.0191$ Pc (tsf) = 1.79		OCR = 10.2	
LOAD	c _v	k					
tsf	in²/min	in/min	0.020				
Seating	NA	NA	0.015 0.010				
0.50	9.34E-03	9.85E-07	<u>열</u> 0.010				
1.00	5.36E-03	4.89E-07	0.005 ج	 			
2.00	5.03E-03	2.65E-07	0.000				
4.00	5.04E-03	1.73E-07	0	.10 1.0	0 10.00	100.00	
8.00	5.03E-03	1.18E-07			Applied Stress - tsf		
16.00	5.03E-03	7.08E-08		•	Applied Stress - isi		
			c _v values calculated by Sivaram and Swamee's Method				


SA	SAMPLE AND TEST DATA			PROJECT INFORMATION			
SAMPLE LO	CATION: B-6,	3-5'		PROJECT:	Luminant Martin Lake Pt	OP 1-3	
DESCRIPTIO	ESCRIPTION: Ash, black and dark gray			LOCATION:			
				PROJECT NO.: ETT08002-07			
LL: NA	PL: NA	PI: NA	-200:NA	CLIENT:	ETTL Engineers & Cons	ultants, Inc.	
ASSUMED S	PECIFIC GRA	VITY:	2.70	CLIENT NO.:	G2810-08		
MC Initial:	58.1%	MC Final:	47.2%	DATE:	4/24/2008		
Dia. (in.) :	2.50	Height (in.):	1.000	REMARKS: OCR calculated based on Pc and vertical overburden			
Initial Sat %:	70.2	Final Sat %:	100.0	GREGORY GEOTECHNICAL PLATE B-CN		PLATE B-CN.1	
DRY DENSIT	Y (pcf):	55.8		GALGOAT	GEOTECHNICAL	FLATE D-CN.T	

CONSOLIDATION TEST REPORT ASTM D 2435

C _c =	0.146	C _r =	0.012 $e_0 = 0.5597$ Pc (tsf) = 1.93 OCF		$e_0 = 0.5597$		$e_0 = 0.5597$ Pc (tsf) = 1.93		OCR = 3.5
LOAD	c _v	k							
tsf	in²/min	in/min		.025					
Seating	NA	NA	in2/min	.020					
0.50	1.67E-02	2.82E-06	in2						
1.00	1.51E-02	1.33E-06	ı U.	.015					
2.00	1.55E-02	8.75E-07	٥	.010					
4.00	1.54E-02	5.00E-07	U.	0.10	1.0	00 10.00	100.00		
8.00	1.51E-02	2.67E-07		0.10	1.0	10.00	100.00		
16.00	1.39E-02	1.50E-07	Applied Stress - tsf						
			c _v values calculated by Sivaram and Swamee's Method						

SA	AMPLE AN	D TEST DA	ATA	PROJECT INFORMATION		
SAMPLE LO	CATION: B-4,	8-10'		PROJECT:	Luminant Martin Lake Pl	DP 1-3
DESCRIPTION: Clayey Sand , reddish brown with gray			own with gray			
				PROJECT NO.:	ETT08002-07	
LL: NA	PL: NA	PI: NA	-200: NA	CLIENT:	ETTL Engineers & Cons	ultants, Inc.
ASSUMED S	PECIFIC GRA	VITY:	2.70	CLIENT NO.:	G2810-08	
MC Initial:	13.0%	MC Final:	19.6%	DATE:	4/24/2008	
Dia. (in.) :	2.50	Height (in.):	1.000	REMARKS: OCR cal	culated based on Pc and vertical o	verburden
Initial Sat %:	70.2	Final Sat %:	100.0	GREGORY GEOTECHNICAL PLATE B-CN.		PLATE B-CN.2
DRY DENSIT	Y (pcf):	108.0		GREGORI	GEOTECHNICAL	PLATE 6-UN.2

PEAK STRENGTH PARAMETERS	$\phi = 39.8$	deg	c =	0.5	psi
POST PEAK STRENGTH PARAMETERS	$\phi = 37.5$	deg	c =	0.0	psi
	SPECIMEN NO.	1	2	3	4
40.0		INI	TAL		
	Moisture Content - %	52.1	29.3	21.2	
35.0	Dry Density - pcf	50.2	71.7	95.2	
30.0	Diameter - inches	2.50	2.50	2.50	
=	Height - inches	1.13	1.13	1.13	
(Sa) 25.0		AT T	EST		
20.0	Final Moisture - %	64.3	25.0	31.6	
8 200	Dry Density - pcf	55.8	79.1	117.3	
15.0	Height-End of Consol. (in.)	1.02	1.03	0.92	
	Height-End of Shear (in.)	0.97	0.99	0.89	
10.0	Normal Stress - psi	10.0	20.0	40.0	
5.0	Peak Failure Stress-psi	9.2	16.5	34.0	
	Post Peak Failure Stress-psi	7.9	14.9	30.8	
0.0	Strain Rate - inches/min.	0.00300	0.00300	0.00300	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	16.2	15.6	15.6	
Deformation (in)	Post Peak Failure Strain %	8.4	7.2	9.6	
	Dry Density at test based on	initial moisture	and height at	end of consolic	dation.

PROJECT INFORMATION

PLATE: B-DS.1

PROJECT: Luminant Martin Lake PDP 1-3

PROJECT NO: ETT08002-07 (G2810-08)

GREGORY GEOTECHNICAL

CLIENT: ETTL Engineers & Consultants, Inc.

LOCATION: Rusk, TX

DATE:4/25/08

TEST DESCRIPTION

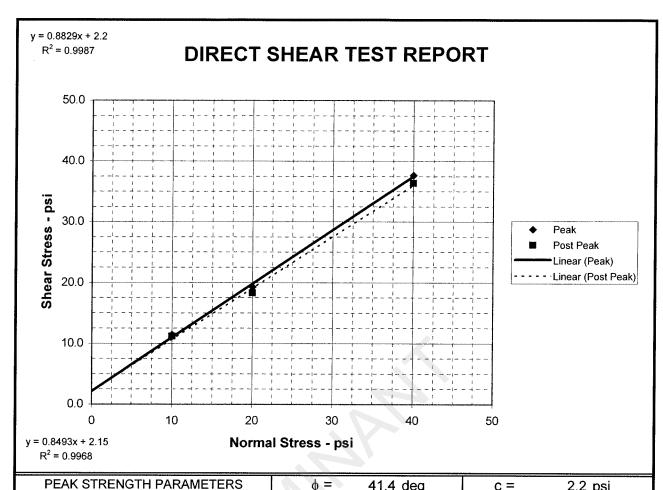
PI: 16

Percent -200: 61

TYPE OF TEST & NO: CD-DS-1

SAMPLE LOCATION: B-6, 3-5 ft

REMARKS: Multi-Specimen


LL: 35

DESCRIPTION: Ash, black and gray

ASSUMED SPECIFIC GRAVITY: 2.65

PL: 19

SAMPLE TYPE: Shelby Tube

TEAR OTHEROTTI ARAMETERO	Ψ - 41.4	ueg	ا ا	۷.۷	psi
POST PEAK STRENGTH PARAMETERS	$\phi = 40.3$	deg	c=	2.2	psi
	SPECIMEN NO.	1	2	3	4
40.0		INIT	TAL		
	Moisture Content - %	13.1	13.1	13.1	
35.0	Dry Density - pcf	71.8	71.7	71.7	
30.0	Diameter - inches	2.50	2.50	2.50	
	Height - inches	1.00	1.00	1.00	
25.0		AT T	EST		
SS 20.0	Final Moisture - %	38.5	37.4	31.6	
<u>z</u> 200	Dry Density - pcf	73.6	73.7	75.8	
15.0	Height-End of Consol. (in.)	0.98	0.97	0.95	
	Height-End of Shear (in.)	1.00	0.96	0.92	
10.0	Normal Stress - psi	10.0	20.0	40.0	
5.0	Peak Failure Stress-psi	11.4	19.3	37.7	
	Post Peak Failure Stress-psi	11.2	18.3	36.4	
0.0	Strain Rate - inches/min.	0.00300	0.00300	0.00300	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	15.6	15.6	13.2	
Deformation (in)	Post Peak Failure Strain %	13.8	12.0	15.0	
	Dry Density at test based on	initial moisture	and height at	end of consolic	lation.

TYPE OF TEST & NO: CD-DS-2 SAMPLE TYPE: Re-Compacted DESCRIPTION: Ash, black and dark gray SAMPLE LOCATION: MLSES (Bulk) SPECIFIC GRAVITY: 2.56

TEST DESCRIPTION

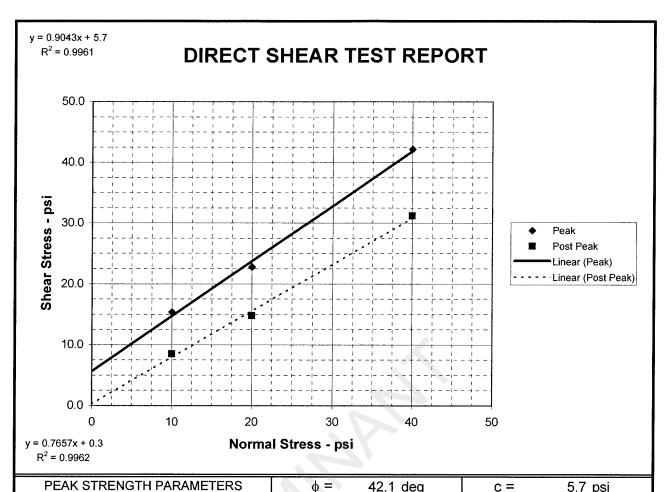
LL: NP PL: NP PI: NP REMARKS: Multi-Specimen

Percent -200: 3.33

PROJECT INFORMATION

LOCATION: Rusk , TX

PROJECT NO: ETT08002-07 (G2810-08)


PROJECT: Luminant Martin Lake PDP 1-3

CLIENT: ETTL Engineers & Consultants, Inc.

DATE:5/6/08

GREGORY GEOTECHNICAL

PLATE: B-DS.2

TEMOTIVEMOTITION	$\psi = 42.1$	ueg	ו	3.1	pai
POST PEAK STRENGTH PARAMETERS	$\phi = 37.4$	deg	c =	0.3	psi
	SPECIMEN NO.	1	2	3	4
45.0		INIT	TAL		
40.0	Moisture Content - %	0.1	0.1	0.1	
40.0	Dry Density - pcf	71.7	71.7	71.7	
35.0	Diameter - inches	2.50	2.50	2.50	
€ 30.0 + 1	Height - inches	1.00	1.00	1.00	
<u> </u>	AT TEST				
25.0	Final Moisture - %	50.3	37.4	31.6	
20.0	Dry Density - pcf	73.4	73.1	73.1	
S 15.0	Height-End of Consol. (in.)	0.98	0.98	0.98	
あ 15.0 f	Height-End of Shear (in.)	1.01	1.01	0.99	
10.0	Normal Stress - psi	10.0	20.0	40.0	
5.0	Peak Failure Stress-psi	15.4	22.8	42.2	
	Post Peak Failure Stress-psi	8.5	14.8	31.2	
0.0	Strain Rate - inches/min.	0.00300	0.00300	0.00300	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	17.6	3.0	3.6	
Deformation (In)	Post Peak Failure Strain %	15.0	15.6	13.8	
	Dry Density at test based on initial moisture and height at end of consolidation.				
TEST DESCRIPTION		DDO IEC	TIMEAD	HATION	

TEST DESCRIPTION

PROJECT INFORMATION

TYPE OF TEST & NO: CD-DS-2 SAMPLE TYPE: Re-Compacted

DESCRIPTION: Economized Ash, tan and gray

SAMPLE LOCATION: MLSES (Bulk)

SPECIFIC GRAVITY: 2.67

LL: NP PL: NP REMARKS: Multi-Specimen

PI: NP

Percent -200: 8.64

GREGORY GEOTECHNICAL

PROJECT: Luminant Martin Lake PDP 1-3

PROJECT NO: ETT08002-07 (G2810-08)

CLIENT: ETTL Engineers & Consultants, Inc.

LOCATION: Rusk, TX

DATE:5/20/08

PLATE: B-DS.3

PROJECT INFORMATION

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO: ETTL ENGINEERS AND CONSULTANTS, INC. 1717 East Erwin Tyler, TX 75702

TEST DESCRIPTION

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan w/ Red & Gray Clayey Sand

Sampled on Site, B-16 8' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: PI:

REMARKS: Diameter and Both Ends Trimmed +# 4 Sieve


Percent -200:

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3

EFFECTIVE STRESS PARAMETERS	φ'=	31.9	deg	c' =	1.3	psi
	SPECIME	NO.	1	2	3	4
100.00			INIT	IAL		
	Moisture Cont	ent - %	17.2	16.8	16.3	
	Dry Density -	pcf	112.6	114.4	115.0	
<u>8</u>	Diameter - inc	hes	2.47	2.46	2.48	
	Height - inche	s	4.98	4.97	5.00	
DEVIATOR STRESS			AT T	EST		
50.00	Final Moisture	- %	18.4	16.5	16.0	
g sollo	Dry Density -	pcf	113.1	115.3	116.9	
Ĭ Ĭ	Calculated Dia	ameter (in.)	2.47	2.46	2.50	
	Height - inche	s	5.00	4.97	5.06	
	Effect. Cell Pr	essure - psi	10.0	20.0	40.0	
<u> </u>	Failure Stress	- psi	18.88	28.83	63.14	
	Total Pore Pre	essure - psi	54.3	58.2	64.1	
0.00	Strain Rate - i	nches/min.	0.00050	0.00050	0.00050	
0.0 10.0 20.0	Failure Strain	- %	1.8	3.0	5.2	
AXIAL STRAIN - % σ ₁ ' Fa		si	24.54	40.64	89.01	
	σ ₃ ' Failure - p	si	5.66	11.81	25.87	
TEST DESCRIPTION PROJI			PROJEC	T INFOR	MATION	

PROJECT: Martin Lake PDP 1 - 3 Supplemental LOCATION:

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample

REMARKS: Diameter and Both Ends Trimmed

DESCRIPTION: Tan w/ Red & Gray Clayey Sand

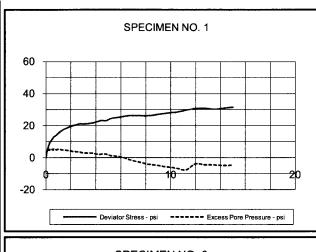
Sampled on Site, B-16 8' to 10' deep

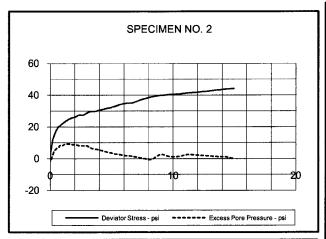
ASSUMED SPECIFIC GRAVITY: 2.7

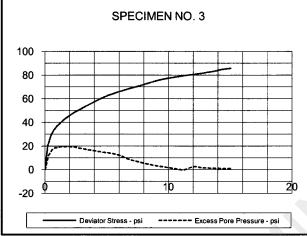
+ 40 Sieve

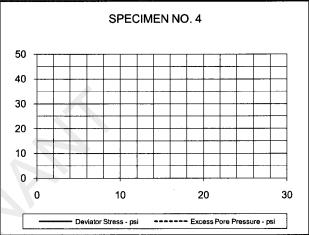
PI:

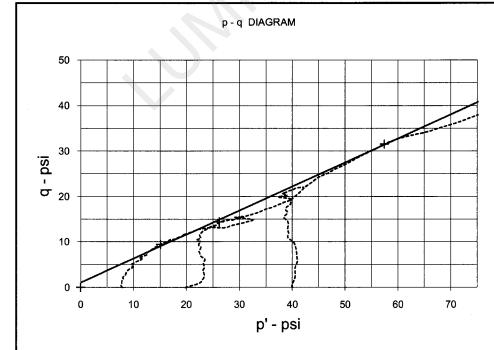
Percent -200:

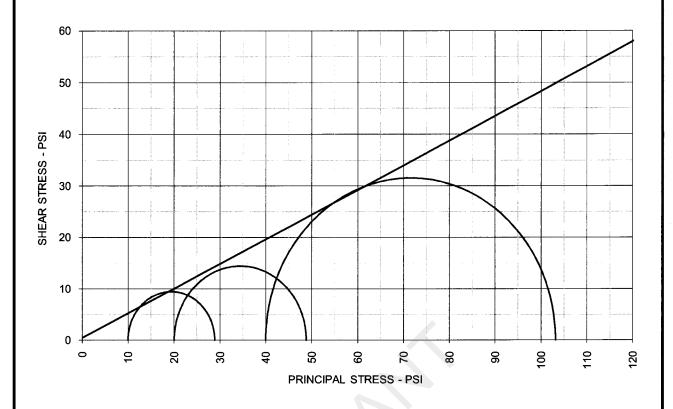

+ # 4 Sieve


PROJECT NO: G 3219 - 09


CLIENT: HDR September 2009


ETTL ENGINEERS & CONSULTANTS


PLATE: B.1



EFFECTIVE STRESS PARAMETERS $R^2 = 1.00$	α (deg) = 27.9 a (psi) =	1.1
PROJECT: Martin Lake PDP 1 - 3 Supplemental	TYPE OF TEST & NO: CU with PP	
PROJECT NO: G 3219 - 09	ETTL ENGINEERS & CONSULTANTS	PLATE: B.2
DESCRIPTION: Tan w/ Red & Gray Clayey Sand	ETTE ENGINEERS & CONSULTANTS	PLATE, B.Z

TOTAL STRESS PARAMETERS	φ = 25.6	deg	c =	
	SPECIMEN NO.	1	2	
100.00		INIT	IAL	
	Moisture Content - %	17.2	16.8	
	Dry Density - pcf	112.6	114.4	
8	Diameter - inches	2.47	2.46	
	Height - inches	4.98	4.97	
SS /		AT T	EST	
₩ 50.00 /	Final Moisture - %	18.4	16.5	
5 5 5 5 5	Dry Density - pcf	113.1	115.3	
5	Calculated Diameter (in.)	2.47	2.46	
DEVIATOR STRESS	Height - inches	5.00	4.97	
Ä W	Effect. Cell Pressure - psi	10.0	20.0	
	Failure Stress - psi	18.88	28.83	
	Total Pore Pressure - psi	54.3	58.2	
0.00	Strain Rate - inches/min.	0.00050	0.00050	
0.0 10.0 20.0	Failure Strain - %	1.8	3.0	
AXIAL STRAIN - %	σ₁ Failure - psi	28.88	48.83	
	σ ₃ Failure - psi	10.00	20.00	
TEST DESCRIPTION		PROJEC	T INFOR	MA

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan w/ Red & Gray Clayey Sand

Sampled on Site, B-16 8' to 10' deep

ASSUMED SPECIFIC GRAVITY: 2.7 LL: PL: PI:

+ 40 Sieve

REMARKS: Diameter and Both Ends Trimmed

Percent -200: + # 4 Sieve **PROJECT INFORMATION**

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

ETTL ENGINEERS & CONSULTANTS

PROJECT: Martin Lake PDP 1-3 Supplemental

PLATE: B.3

0.5 psi

16.3 115.0 2.48 5.00

16.0 116.9 2.50 5.06 40.0 63.14 64.1 0.00050 5.2 103.14 40.00

4

PROJECT INFORMATION

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO:

ETTL ENGINEERS AND CONSULTANTS, INC.

1717 East Erwin Tyler, TX 75702

TEST DESCRIPTION

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan & Red Sandy Lean Clay

Sampled on Site, B-17 3' to 7' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

LL: PL: Pl:

REMARKS: Diameter and Both Ends Trimmed + # 4 Sieve

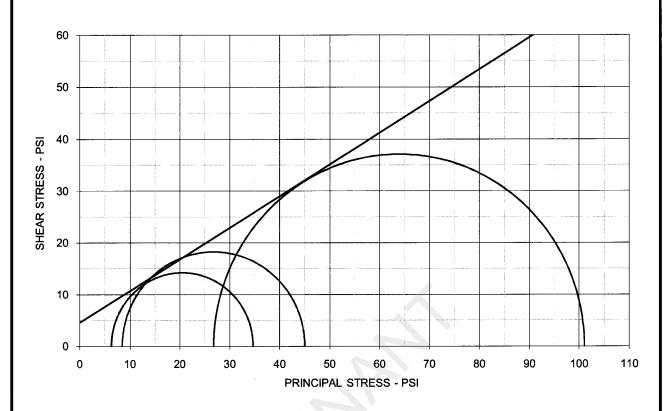

Percent -200:

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3

EFFECTIVE STRESS PARAMETERS	φ'= 31.4 deg
450.00	SPECIMEN NO.
150.00 2 2 100.00	Moisture Content - % Dry Density - pcf Diameter - inches Height - inches
PVATOR STRESS - PS	Final Moisture - % Dry Density - pcf Calculated Diameter (in.) Height - inches
0.00 10.0 20.0 AXIAL STRAIN - %	Effect. Cell Pressure - psi Failure Stress - psi Total Pore Pressure - psi Strain Rate - inches/min. Failure Strain - % σ ₁ ' Failure - psi σ ₃ ' Failure - psi

φ'= 31.4	deg	eg c' =		psi
SPECIMEN NO.	1	2	3	4
	INIT	IAL		
Moisture Content - %	16.2	13.3	13.9	
Dry Density - pcf	113.5	121.6	115.5	
Diameter - inches	2.49	2.49	2.50	
Height - inches	5.08	5.00	5.16	
	AT T	EST		
Final Moisture - %	18.1	14.7	16.3	
Dry Density - pcf	114.1	123.3	117.2	
Calculated Diameter (in.)	2.50	2.50	2.52	
Height - inches	5.10	5.04	5.22	
Effect. Cell Pressure - psi	10.0	20.0	40.0	,
Failure Stress - psi	28.40	36.54	74.24	
Total Pore Pressure - psi	53.7	61.5	63.2	
Strain Rate - inches/min.	0.00050	0.00050	0.00050	
Failure Strain - %	0.8	3.5	1.8	
σ ₁ ' Failure - psi	34.71	45.04	101.03	
σ ₃ ' Failure - psi	6.31	8.50	26.79	

TEST DESCRIPTION

PROJECT INFORMATION

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample

DESCRIPTION: Tan & Red Sandy Lean Clay

Sampled on Site, B-17 3' to 7' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve

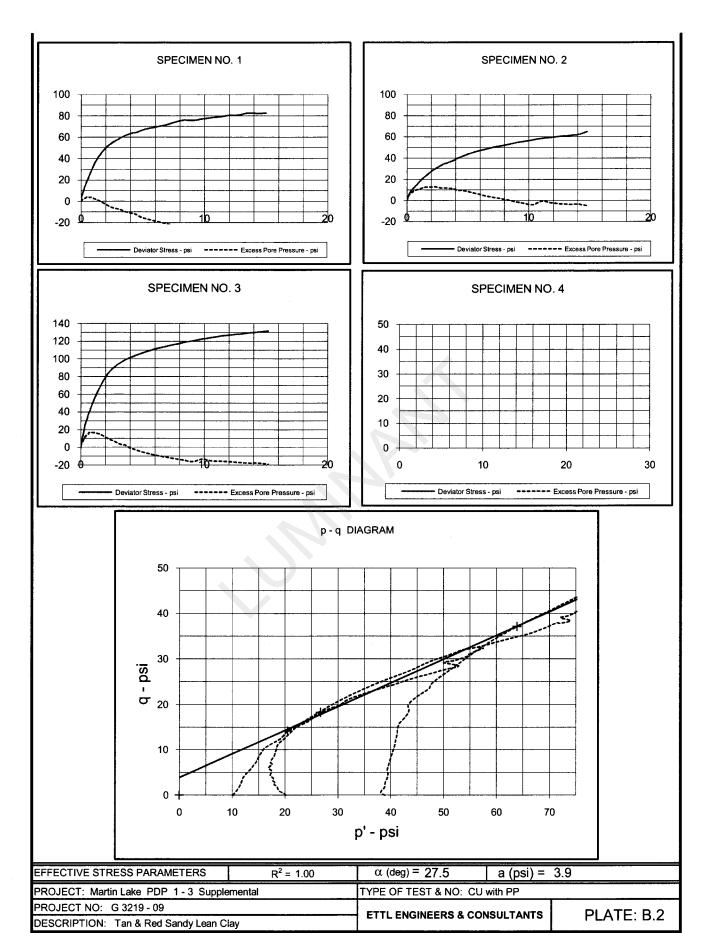
LL:

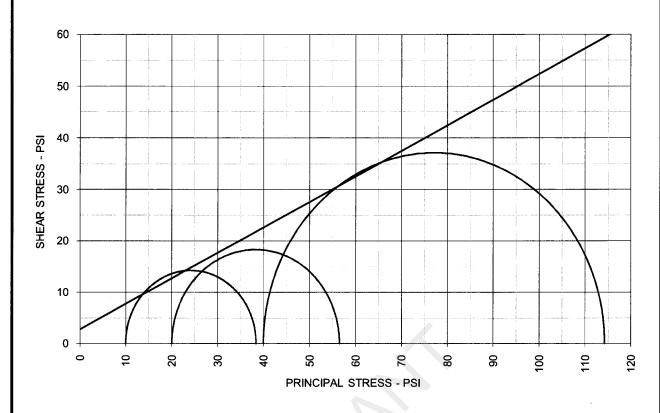
Percent -200:

REMARKS: Diameter and Both Ends Trimmed + # 4 Sieve

PI:

PROJECT: Martin Lake PDP 1 - 3 Supplemental


LOCATION:


PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

ETTL ENGINEERS & CONSULTANTS

PLATE: B.1

TOTAL STRESS PARAMETERS	φ = 26.4	deg	c =	2.8	psi
	SPECIMEN NO.	1	2	3	4
150.00		INIT	IAL		
	Moisture Content - %	16.2	13.3	13.9	
	Dry Density - pcf	113.5	121.6	115.5	
<u>s</u>	Diameter - inches	2.49	2.49	2.50	
100.00	Height - inches	5.08	5.00	5.16	
SS /		AT T	EST		
	Final Moisture - %	18.1	14.7	16.3	
S S	Dry Density - pcf	114.1	123.3	117.2	
50.00	Calculated Diameter (in.)	2.50	2.50	2.52	
PEVIATOR STRESS	Height - inches	5.10	5.04	5.22	
≅ #/	Effect. Cell Pressure - psi	10.0	20.0	40.0	
/	Failure Stress - psi	28.40	36.54	74.24	
0.00	Total Pore Pressure - psi	53.7	61.5	63.2	
0.00	Strain Rate - inches/min.	0.00050	0.00050	0.00050	
0.0 10.0 20.0	Failure Strain - %	0.8	3.5	1.8	
AXIAL STRAIN - %	σ₁ Failure - psi	38.40	56.54	114.24	
	σ_3 Failure - psi	10.00	20.00	40.00	_
TEST DESCRIPTION		PROJEC	T INFOR	MATION	

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Native Shelby Tube Sample DESCRIPTION: Tan & Red Sandy Lean Clay

Sampled on Site, B-17 3' to 7' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve LL: PL: PI: Percent -200:

REMARKS: Diameter and Both Ends Trimmed

PROJECT: Martin Lake PDP 1-3 Supplemental

LOCATION:

+#4 Sieve

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

ETTL ENGINEERS & CONSULTANTS

PLATE: B.3

PROJECT INFORMATION

PROJECT: Martin Lake PDP 1 - 3 Supplemental

LOCATION:

PROJECT NO: G 3219 - 09

CLIENT: HDR September 2009

TRIAXIAL TEST PROGRAM BY GARRY H. GREGORY, P.E.

ALL RIGHTS RESERVED - UNAUTHORIZED USE PROHIBITED VERSION 1.0 - AUGUST 1998 - REVISED MARCH 24, 1999

THIS COPY LICENSED TO:

ETTL ENGINEERS AND CONSULTANTS, INC.

1717 East Erwin Tyler, TX 75702

TEST DESCRIPTION

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Lab Molded

DESCRIPTION: Tan & Reddish Tan Silty Sand

Sampled on Site, TP- 31 0' to 5' deep

ASSUMED SPECIFIC GRAVITY: 2.7 + 40 Sieve 2%

LL: 20 PL: 17 Pt: 3 Percent -200: 27%

REMARKS: Both Ends Trimmed +#4 Sieve 1%

PLATE: B.1

PLATE: B.2

PLATE: B.3

Number of Specimens = 3

EFFECTIVE STRESS PARAMETERS	φ'=	34.7	deg	c' =	-0.4	psi
	SPECIMEN	NO.	1	2	3	4
150.00			INIT	IAL		
 	Moisture Conter	nt - %	17.3	17.2	17.4	
	Dry Density - po	of .	110.3	110.5	110.4	
₹	Diameter - inche	es i	2.87	2.87	2.85	
100.00	Height - inches		5.57	5.59	5.61	
SS 100.00 SIRES			AT T	EST		
	Final Moisture -	%	17.2	16.7	16.5	
ğ	Dry Density - po	of .	110.6	111.6	112.0	
₹ 50.00	Calculated Dian	neter (in.)	2.87	2.88	2.87	i
) 30.00	Height - inches		5.58	5.62	5.66	
- <i> </i>	Effect. Cell Pres	ssure - psi	10.0	20.0	40.0	
	Failure Stress -	psi	15.65	28.63	43.17	
	Total Pore Pres	sure - psi	54.3	56.7	74.3	
0.00	Strain Rate - inc	ches/min.	0.00050	0.00050	0.00050	
	Failure Strain - 9	%	2.4	3.5	4.6	
AXIAL STRAIN - % σ₁' Failure - p			21.35	41.97	58.90	
	σ ₃ ' Failure - psi		5.70	13.34	15.73	
TEST DESCRIPTION PROJECT INFORMATION						

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Lab Molded

DESCRIPTION: Tan & Reddish Tan Silty Sand

Sampled on Site, TP- 31 0' to 5' deep

ASSUMED SPECIFIC GRAVITY: 2.7

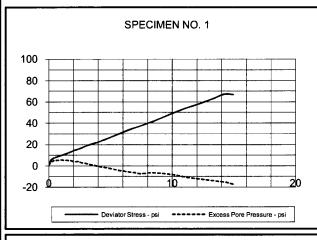
PL: 17

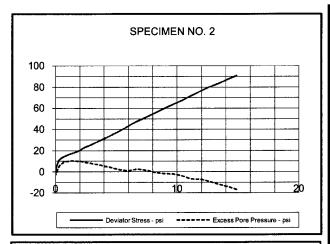
+ 40 Sieve 2%

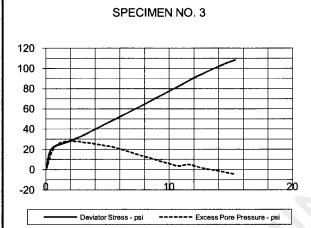
+#4 Sieve 1%

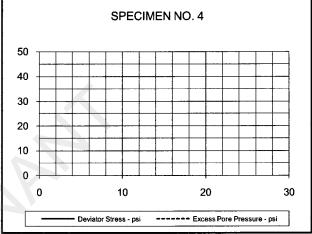
Percent -200: 27%

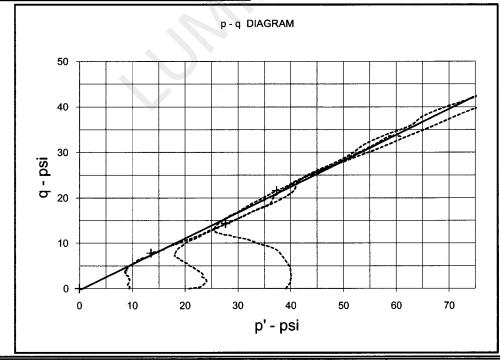
LOCATION:

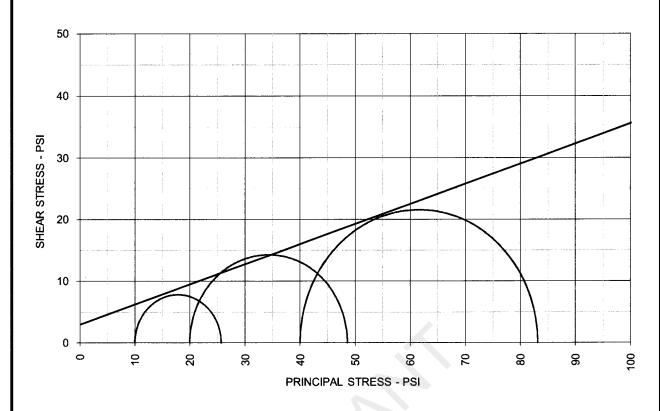

PROJECT NO: G 3219 - 09


CLIENT: HDR September 2009


ETTL ENGINEERS & CONSULTANTS


PROJECT: Martin Lake PDP 1 - 3 Supplemental


PLATE: B.1



EFFECTIVE STRESS PARAMETERS	$R^2 = 0.98$	$\alpha (deg) = 29.7$	a (psi) =	-0.3		
PROJECT: Martin Lake PDP 1 - 3 Supple	TYPE OF TEST & NO: CU with PP					
PROJECT NO: G 3219 - 09	ETTL ENGINEERS & COM	NCIII TANTO	PLATE: B.2			
DESCRIPTION: Tan & Reddish Tan Silty S	and	ETTE ENGINEERS & COI	1301171113	PLATE, D.Z		

TOTAL STRESS PARAMETERS	φ = 18.0	deg	c =	3.0	psi
	SPECIMEN NO.	1	2	3	4
150.00		INIT	1AL		
	Moisture Content - %	17.3	17.2	17.4	
	Dry Density - pcf	110.3	110.5	110.4	
<u>S</u>	Diameter - inches	2.87	2.87	2.85	
100.00	Height - inches	5.57	5.59	5.61	
SS /		AT T	EST		
	Final Moisture - %	17.2	16.7	16.5	
20	Dry Density - pcf	110.6	111.6	112.0	
50.00	Calculated Diameter (in.)	2.87	2.88	2.87	
PEVIATOR STRESS	Height - inches	5.58	5.62	5.66	
ű ///	Effect. Cell Pressure - psi	10.0	20.0	40.0	
	Failure Stress - psi	15.65	28.63	43.17	
	Total Pore Pressure - psi	54.3	56.7	74.3	
0.00	Strain Rate - inches/min.	0.00050	0.00050	0.00050	
0.0 10.0 20.0	Failure Strain - %	2.4	3.5	4.6	
AXIAL STRAIN - %	σ₁ Failure - psi	25.65	48.63	83.17	
	σ_3 Failure - psi	10.00	20.00	40.00	
TEST DESCRIPTION		DDO IEC	T INICOD	MATION	

TEST DESCRIPTION

PROJECT INFORMATION

TYPE OF TEST & NO: CU with PP

SAMPLE TYPE: Lab Molded

DESCRIPTION: Tan & Reddish Tan Silty Sand

Sampled on Site, TP- 31 0' to 5' deep

ASSUMED SPECIFIC GRAVITY: 2.7

PL: 17 PI: 3

+ 40 Sieve 2%

+ # 4 Sieve 1%

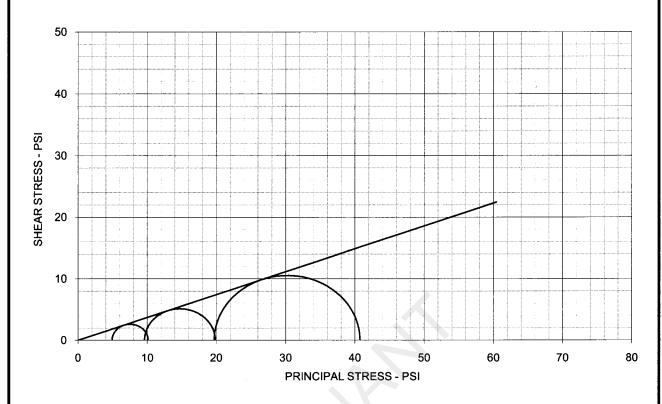
REMARKS: Both Ends Trimmed

LL: 20

Percent -200: 27%

CLIENT: HDR

LOCATION:


September 2009

PROJECT NO: G 3219 - 09

ETTL ENGINEERS & CONSULTANTS

PROJECT: Martin Lake PDP 1 - 3 Supplemental

PLATE: B.3

EFFECTIVE STRESS PARAMETERS	φ'=	20.4	deg	c' =	0.0	psi
	SPECIMEN	NO.	1	2	3	4
30 +			INI	ΓIAL		
	Moisture Conte	ent - %	26.1	24.6	21.3	i
	Dry Density - p	ocf	94.3	95.8	101.6	!
70	Diameter - incl	nes	1.40	1.40	1.40	i
<u>₹</u>	Height - inches	3	2.81	2.85	3.20	
			AT T	EST		
Щ Щ	Final Moisture	- %	26.1	24.6	21.3	
<u> </u>	Dry Density - p	ocf	94.3	97.0	101.6	i
P 10	Calculated Dia	meter (in.)	1.40	1.40	1.40	i
DEVIATOR STRESS	Height - inches	3	2.81	2.85	3.20	
	Effect. Cell Pre	essure - psi	5.0	10.0	20.0	1
	Failure Stress	- psi	5.21	10.25	21.03	ı
	Total Pore Pre	ssure - psi	20.0	20.0	20.0	i
0 1	Strain Rate - ir	nches/min.	0.00050	0.00050	0.00050	l
	Failure Strain -	. %	15.6	14.2	15.9	l
AXIAL STRAIN - % σ₁' Failu		si	10.11	19.85	40.73	1
	σ ₃ ' Failure - ps	si	4.90	9.60	19.70	
TEST DESCRIPTION PF			PROJEC	T INFOR	MATION	

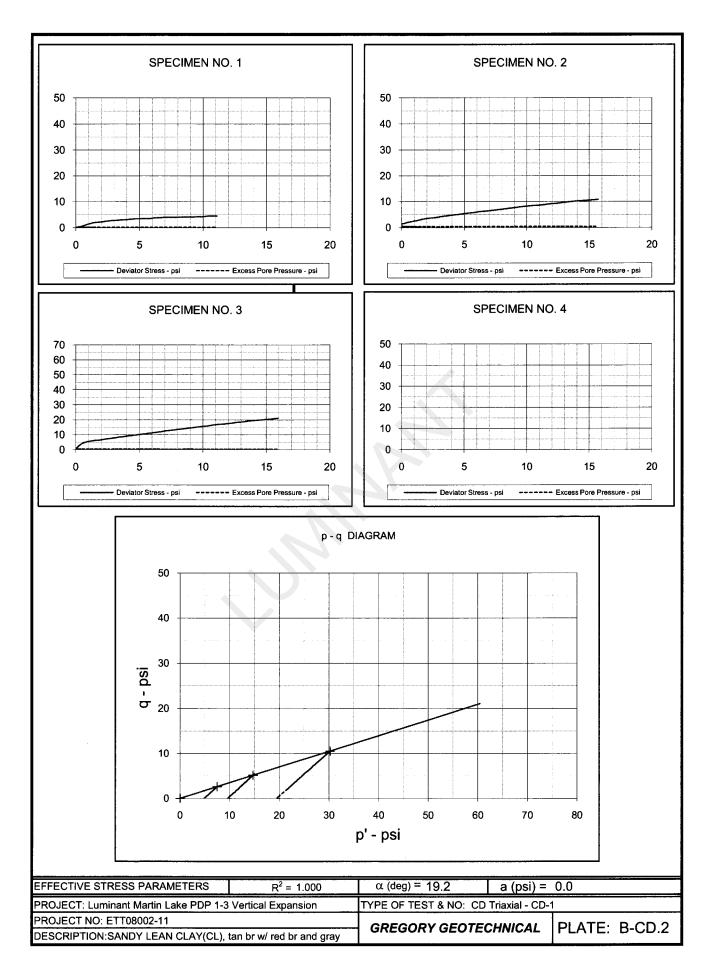
TYPE OF TEST & NO: CD Triaxial - CD-1

SAMPLE TYPE: SHELBY TUBE

DESCRIPTION:SANDY LEAN CLAY(CL), tan br w/ red br and gray

SAMPLE LOCATION: B-16, 3-5'
ASSUMED SPECIFIC GRAVITY: 2.70

LL: 43 PL: 14 PI: 29 Percent -200: 56 REMARKS: Tested in a fully softened remolded state


PROJECT: Luminant Martin Lake PDP 1-3 Vertical Expansion

LOCATION: Tatum, TX PROJECT NO: ETT08002-11

CLIENT: ETTL Engineers & Consultants, Inc.

DATE: 9/15/09

GREGORY GEOTECHNICAL PLATE: B-CD.1

PEAK STRENGTH PARAMETERS	$\phi = 39.2 \text{ deg}$		c =	1.4	psi
POST PEAK STRENGTH PARAMETERS	φ = 34.6	deg	c =	0.0	psi
	SPECIMEN NO.	1	2	3	4
20.0		INIT	TAL		
18.0	Moisture Content - %	41.3	42.3	48.4	
	Dry Density - pcf	78.9	72.5	72.9	
16.0	Diameter - inches	2.50	2.50	2.50	
≘ 14.0	Height - inches	1.00	1.00	1.00	
12.0 12.0 10.0		AT T	EST		N. 11-84
88	Final Moisture - %	46.6	59.5	31.6	
2 10.0 1 10.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dry Density - pcf	81.0	74.2	73.0	
Shear	Height-End of Consol. (in.)	1.03	1.02	1.00	
6.0	Height-End of Shear (in.)	1.03	1.03	1.01	
	Normal Stress - psi	5.0	10.0	20.0	
4.0	Peak Failure Stress-psi	6.1	8.5	18.0	
2.0	Post Peak Failure Stress-psi	4.1	6.9	13.6	
0.0	Strain Rate - inches/min.	0.00030	0.00030	0.00030	
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	1.6	1.9	3.1	
Deformation (in)	Post Peak Failure Strain %	4.3	12.7	11.8	
Dry Density at test based on initial moisture and height at end of consolida				lidation.	

30

40

50

TEST DESCRIPTION

10

20

Normal Stress - psi

PROJECT INFORMATION

PROJECT: Luminant Martin Lake PDP 1-3 Vertical Expansion

TYPE OF TEST & NO: CD-DS-1
SAMPLE TYPE: Shelby Tube

0.0

y = 0.688x $R^2 = 0.990$

DESCRIPTION: SILT(MH), black (classification tests from 13-15 ft)

SAMPLE LOCATION: B-15, 18-20 ft ASSUMED SPECIFIC GRAVITY: 2.65

LL: NP PL: NP PI: NP REMARKS: Tested at natural MC

,

Percent -200: 95

DATE: 9/25/09

PROJECT NO: ETT08002-11 (G3219-09)
CLIENT: ETTL Engineers & Consultants, Inc.

LOCATION: Tatum, TX

GREGORY GEOTECHNICAL

PLATE: B-DS. 1

DIRECT SHEAR TEST REPORT y = 0.788x + 1.4 $R^2 = 0.99$ 50 40 Shear Stress - psi 30 Peak Post Peak Linear (Peak) ----- Linear (Post Peak) 20 10 0 10 20 40 50 y = 0.748x $R^2 = 0.987$ Normal Stress - psi

PEAK STRENGTH PARAMETERS	$\phi = 38.3$	deg	c =	1.4	psi		
POST PEAK STRENGTH PARAMETERS	φ = 36.8	φ = 36.8 deg		c = 0.0 psi			
	SPECIMEN NO.	1	2	3	4		
20.0 1	INITIAL						
18.0	Moisture Content - %	47.2	47.5	46.5			
	Dry Density - pcf	77.0	73.3	72.6			
16.0	Diameter - inches	2.50	2.50	2.50			
≘ 14.0	Height - inches	1.00	1.00	1.00			
12.0 \$ 10.0		AT T	EST				
	Final Moisture - %	47.2	47.5	31.6			
청 10.0	Dry Density - pcf	77.0	73.3	72.6			
System 8.0	Height-End of Consol. (in.)	1.00	1.00	1.00			
6.0	Height-End of Shear (in.)	0.98	0.98	0.99			
4.0	Normal Stress - psi	5.0	10.0	20.0			
	Peak Failure Stress-psi	5.8	8.6	17.4			
2.0	Post Peak Failure Stress-psi	4.4	6.9	15.1			
0.0	Strain Rate - inches/min.	0.00030	0.00030	0.00030			
0.0 0.1 0.2 0.3 0.4 0.5	Peak Failure Strain - %	3.1	15.0	3.1			
Deformation (in)	Post Peak Failure Strain %						
	Dry Density at test based or	initial moistur	e and height a	t end of conso	lidation.		
TEST DESCRIPTION		PROJEC	TINFOR	MATION			

PROJECT: Luminant Martin Lake PDP 1-3 Vertical Expansion

PLATE: B-DS. 2

LOCATION: Tatum, TX

DATE: 9/23/09

PROJECT NO: ETT08002-11 (G3219-09)
CLIENT: ETTL Engineers & Consultants, Inc.

GREGORY GEOTECHNICAL

TYPE OF TEST & NO: CD-DS-2

SAMPLE LOCATION: B-15, 18-20 ft ASSUMED SPECIFIC GRAVITY: 2.65

PL: NP

DESCRIPTION: SILT(MH), black (classification tests from 13-15 ft)

PI: NP

REMARKS: Tested in a fully softened remolded state

Percent -200: 95

SAMPLE TYPE: Shelby Tube

LL: NP

ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :		PUP 1-3		al, Tatum, Te anel Number		D4. ACTIVE	D 5094		
Date: Project No. :	8/26/2009 C 3310 00	Do	•		-	P1; ASTM	D 3064		
	G 3219-09	ге	rmometer Da			Set Mercury to	T	- 4.0	
_ ~	B - 14		ap =	0.03141		Dinat Dn at	Equilibrium	1.8	cm3
Sample:	01.4- 51		aa =	0.76712		0.000444404	Pipet Rp	6.7	cm3
Depth (ft):	3' to 5'		M1 =	0.03018		0.000414194		1.5	cm3
Other Location:	orintian :	Dorle Cross	M2 =	1.04095	3 T=	0.203859738			
Material Des	cription :	Dark Gray	Asn						
				SAMPL	E DATA		· · · · · · · · · · · · · · · · · · ·		
Wet Wt. sam	ple + ring or t	are:	502.16	g					
Tare or ring				g		Before	e Test	After	Test
Wet Wt: of S				g		Tare No.:	T 20	Tare No.:	T 22
Diameter :	2.85	in	7.24	cm2	_	Wet Wt.+tare:	522.84	• Wet Wt.+tare	625.9
Length:	2.80	in		cm		Dry Wt.+tare:	393.34	Dry Wt.+tare:	480.7
Area:	6.38	in^2	41.16	cm2	_	Tare Wt:	160.27	Tare Wt:	140.4
Volume :	17.88	in^3		cm3		Dry Wt.:	233.07	Dry Wt.:	340.3
Unit Wt.(wet):	106.97	pcf	1.71	g/cm^3		Water Wt.:	129.5	Water Wt.:	145.10
Unit Wt.(dry):	68.77	pcf	1.10	g/cm^3		% moist.:	55.6	% moist.:	42.7
Specific Gravity:		2.60	Max Dry De	ensity(pcf) =	68.7952	OMC =	55.5627065		
			-	% of max	= 100.0	+/- OMC =	0.00	-	
Calculated 9	% saturation:	81.52	Void r	atio (e) =	1.36	Porosity (n)=	0.58	-	
				TEGT D	EADINGS				
74 / 1	I-I-I-I Diff-	(0.44):				S	0.04		
Z1(Mercury F	Height Differer	nce @ t1):	5.1	cm	Hydraulic (∍radient =	9.04		
Date	elapsed t	Z	$\Delta Z\pi$	temp	α	k	k		
	_(seconds)	(pipet @ t)		(deg C)	(temp corr)	(cm/sec)	(ft./day)	Reset = *	
8/26/2009		4.5	2.1553335	25	0.889	2.66E-05	7.55E-02		
8/26/2009		4.05	2.6053335	25	0.889	2.79E-05	7.91E-02		
8/26/2009	***************************************	3.6	3.0553335	25	0.889	2.99E-05	8.48E-02	•	
8/26/2009	14	3.25	3.4053335	25	0.889	3.12E-05	8.84E-02	•	
				SUMI	MARY				
		ka =	2.89E-05	cm/sec		Acceptance cr	iteria =	25	%
		<u>ki</u>	0.665.05		<u>Vm</u>	0/	1/	الماصدا	v 400
		k1 =	2.66E-05		7.8	%	Vm =		X 100
		k2 = k3 =	2.79E-05 2.99E-05		3.5 3.5	% %		ka	
		k3 = k4 =	2.99E-05 3.12E-05		3.5 7.8	% %			
		N4 -	3.12E-03	CIII/SEC	1.0	/0			
	Hydraulic co	nductivity	k =	2.89E-05	cm/sec	8.19E-02	ft/day		
	Void Ratio		e =	1.36					
	Porosity		n =	0.58					
	Bulk Density		γ =	1.71	g/cm3	107.0	pcf		
	Water Conte		W =	0.61	cm3/cm3	(at 20 deg C)			
	Intrinsic Perr	neability	kint =	2.96E-10	cm2	(at 20 deg C)		J	
	Liquid Limit	LL							
	Plastic Limit	PL		!		Respectfully Su	ubmitted		
	Plasticity Inc	lex Pl				1			
	- 200 Sieve			%		1/1	1/1/7/		
	+ No 40 Siev	e e		%		Mar.	Mh		_
	+ No 4 Sieve	•		%		Robert M. Duk	e, P.E.		

ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project No. : G Boring No.: B Sample:	e + ring or ta	Dark Gray	mometer D ap = aa = M1 = M2 = Ash	0.031416 0.767120 0.030180 1.040953	cm2 cm2 C = T =	P 2 ; ASTM Set Mercury to Dinat Pn at 0.000414194 0.203859738	Equilibrium Pipet Rp Annulus Ra	1.8 6.7 1.5	cm3 cm3
Boring No.: B Sample: Depth (ft): 16 Other Location: Material Descrip Wet Wt. sample Tare or ring Wt Wet Wt: of Sam Diameter: Length: Area: Volume: Unit Wt.(wet):	- 14 6' to 17' ption: e + ring or ta t.: nple: 2.85 2.80 6.38	Dark Gray /	ap = aa = M1 = M2 = Ash	0.031416 0.767120 0.030180 1.040953	C = T =	0.000414194	Pipet Rp Annulus Ra	6.7	cm3
Sample: Depth (ft): 16 Dither Location: Material Descrip Wet Wt. sample Tare or ring Wt Wet Wt: of Sam Diameter: Length: Area: Volume: Unit Wt.(wet):	6' to 17' ption : e + ring or ta t. : nple : 2.85 2.80 6.38	are:	aa = M1 = M2 = Ash	0.767120 0.030180 1.040953 SAMPLE	C = T =	0.000414194	Pipet Rp Annulus Ra	6.7	cm3
Depth (ft): 16 Dither Location: Material Descrip Wet Wt. sample Tare or ring Wt Wet Wt: of Sam Diameter: Length: Area: Volume: Unit Wt.(wet):	e + ring or ta t. : nple : 2.85 2.80 6.38	are:	M1 = M2 = Ash	0.030180 1.040953 SAMPLE	C = T =	0.000414194	Annulus Ra		
Other Location: Material Descrip Wet Wt. sample Fare or ring Wt Wet Wt: of Sam Diameter: Length: Area: Volume: Unit Wt.(wet):	e + ring or ta t. : nple : 2.85 2.80 6.38	are:	M2 = Ash 457.47	1.040953 SAMPLE	T=			1.5	cm3
Material Descrip Wet Wt. sample Tare or ring Wt Wet Wt: of Sam Diameter : Length : Length : Volume : Unit Wt.(wet):	e + ring or ta t. : nple : 2.85 2.80 6.38	are:	Ash 457.47	SAMPLE		0.203859738	3		
Wet Wt. sample Tare or ring Wt Wet Wt: of Sam Diameter : Length : Area: Volume : Unit Wt.(wet):	e + ring or ta t. : nple : 2.85 2.80 6.38	are:	457.47		DATA				
Fare or ring Wt Wet Wt: of Sam Diameter:ength: Area: Jolume: Juit Wt.(wet):	t. : nple : 2.85 2.80 6.38				DATA			_	
Tare or ring Wt Wet Wt: of Sam Diameter : Length : Area: Volume : Unit Wt.(wet):	t. : nple : 2.85 2.80 6.38								
Tare or ring Wt Wet Wt: of Sam Diameter : Length : Area: Volume : Unit Wt.(wet):	t. : nple : 2.85 2.80 6.38			a					
Wet Wt: of Sam Diameter : Length : Area: Volume : Unit Wt.(wet):	nple : 2.85 2.80 6.38	in .	0.0	,g		Defea	- T4	A #4	T4
Diameter :ength : Area: /olume : Unit Wt.(wet):	2.85 2.80 6.38	in		.g			e Test	After	
Length : Area: Volume : Unit Wt.(wet):	2.80 6.38	ın		g	-	Tare No.:	T 18	Tare No.:	T 16
Area: Volume : Unit Wt.(wet):	6.38		7.24	cm2		Wet Wt.+tare:	711.07	Wet Wt.+tare:	
/olume : Jnit Wt.(wet):		_in 	7.12	cm	-	Dry Wt.+tare:	478.92	Dry Wt.+tare:	412.38
Jnit Wt.(wet):		_in^2 		cm2		Tare Wt:	146.73	_Tare Wt:	151.98
· · · —		.in^3		cm3		Dry Wt.:	332.19	_Dry Wt.:	260.4
onit wt.(ary):	97.45	pcf .		g/cm^3		Water Wt.:	232.15	Water Wt.:	157.59
	57.36	.pcf	0.92	g/cm^3		% moist.:	69.9	_% moist.:	60.5
Specific Gravity:		2.50	Max Dry De	ensity(pcf) =	57.38916	OMC =	69.8847045	_	
				% of max =	100.0	+/- OMC =	0.00	_	
Calculated % s	saturation:	87.92	Void r	ratio (e) =	1.72	Porosity (n)=	0.63	-	
				TEST RE	ADINGS				
Z1(Mercury Hei	aht Differen	ce @ t1):	5.1	cm	Hydraulic C	Fradient =	9.04		
2 (Wordary 110)	grit Dirioron	00 @ (1).		, Oil	Trydradiio C	Stadione	0.04		
Date	elapsed t	Z	$\Delta Z\pi$	temp	α	k	k		
	(seconds)	(pipet @ t)	(cm)	(deg C)	(temp corr)	(cm/sec)	(ft./day)	_ Reset = *	
8/26/2009	80	4.2	2.4553335	25	0.889	3.20E-06	9.06E-03	•	
8/26/2009	90		2.6053335	25	0.889	3.10E-06	8.79E-03		
8/26/2009	100		2.7553335	25	0.889	3.04E-06	8.61E-03		
8/26/2009	110	3.75	2.9053335	25	0.889	3.00E-06	8.52E-03		
				SUMM	IARY				
		ka =	3.08E-06	cm/sec		Acceptance cr	iteria =	25	%
		<u>ki</u>			<u>Vm</u>				
		k1 =	3.20E-06		3.6	%	Vm =	ka-ki	x 100
		k2 =	3.10E-06		0.5	%		ka	
		k3 =	3.04E-06		1.5	%			
		k4 =	3.00E-06	cm/sec	2.6	%			
H	ydraulic cor	nductivity	k =	3.08E-06	cm/sec	8.74E-03	ft/day	1	
	oid Ratio		e =	1.72			i		
in.	orosity		n =	0.63				1	
JP6	ulk Density		γ =	1.56	g/cm3	97.5	pcf		
	/ater Conter		W =	0.64	cm3/cm3	(at 20 deg C)			
Bı W		neahility	kint =	3.16E-11	cm2	(at 20 deg C)	١	j	
Bı W	trinsic Perm	.cubinty							
Bu W <u>In</u> Lie	quid Limit	LL [
Bu W <u>In</u> Lie Pl	quid Limit lastic Limit	LL PL				Respectfully Su	ubmitted		
Bu W <u>In</u> Lie Pl	quid Limit	LL PL				Respectfully Su	ubmitted		
Bu W In Lic Pl	quid Limit lastic Limit	LL PL		%		Respectfully Su	ubmitted		
Bi W <u>In</u> Lie PI PI	quid Limit lastic Limit lasticity Ind	LL PL ex Pl		% %		Respectfully Su	ubmitted		

210 Beech Street Texarkana, AR 71854 870-772-0013 Phone 870-216-2413 Fax

1717 East Erwin Tyler, Texas 75702 903-595-4421 Phone 903-595-6113 Fax www.ettlinc.com

707 West Cotton Street Longview, Texas 75604-5505 903-758-0915 Phone 903-758-8245 Fax

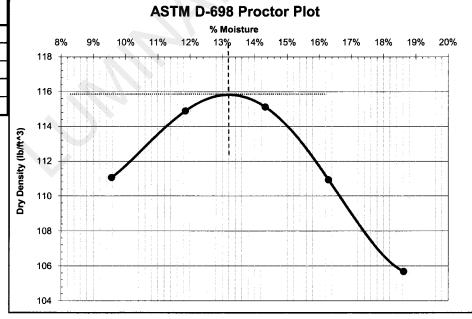
ETTL Engineers & Consultants Inc. GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :		artin Lake Su		TP-31, Tatu		D.4. ACTA	D 5004		
Date: Project No. :	9/9/2009 G 3219-09	Da		anel Number	· :	P1; ASTM	<u>U</u> 5084		
		Pe	rmometer D			Set Mercury to	T		
Boring No.:	TP- 31		ap =	0.03141		Dinat Dn st	Equilibrium	1.8	cm3
Sample:	9228		aa =	0.76712		L	JPipet Rp	6.7	cm3
Depth (ft):	0' to 5'		M1 =	0.03018		0.000414162		1.5	cm3
Other Location:			M2 =	1.04095	3 T=	0.203870442			
Material Des	cription :	Tan & Red	dish Tan Sil	y Sand			 		
				SAMPL	E DATA				
Wet Wt. sam	nple + ring or t	are :	627.20	g					
Tare or ring			0.0	g		Before	e Test	After	Test
Wet Wt: of S			627.20	g		Tare No.:	Т6	Tare No.:	T 1
Diameter :	2.89	in	7.33	cm2		Wet Wt.+tare:	841.20	Wet Wt.+tare	
Length:	2.88	in	7.30	cm		Dry Wt.+tare:	749.54	Dry Wt.+tare:	741.7
Area:	6.55	 in^2	42.23	cm2	_	Tare Wt:	217.39	Tare Wt:	217.29
Volume :	18.82	in^3	308.41	cm3		Dry Wt.:	532.15	Dry Wt	524.43
Unit Wt.(wet):	126.90	pcf	2.03	g/cm^3		Water Wt.:	91.66	Water Wt.:	99.99
Jnit Wt.(dry):	108.26	pcf	1.73	g/cm^3		% moist.:	17.2	% moist.:	19.1
, ,,		-'		, 3				• , •	
Specific Gravity:	:	2.65	Max Dry De	ensity(pcf) =	108.3018	OMC =	17.2244668		
				% of max	= 100.0	+/- OMC =	0.00	•	
Calculated ⁰	% saturation:	95.65	Void i	atio (e) =	0.53	Porosity (n)=	0.35	•	
				TEOT D			. ,	-	
74/14	Little Diff	(0.14)			EADINGS		2.21		
Z1(Mercury I	Height Differer	nce @ t1):	5.1	cm	Hydraulic (Gradient =	8.81		
Date	elapsed t	Z	$\Delta Z\pi$	temp	α	k	k		
	(seconds)	(pipet @ t)	(cm)	(deg C)	(temp corr)	(cm/sec)	(ft./day)	Reset = *	
7/31/2009	600	5.3	1.3550759	25	0.889	1.98E-07	5.63E-04	•	
7/31/2009	720	5.1	1.5550759	25	0.889	1.95E-07	5.53E-04		
7/31/2009	840	5	1.6550759	25	0.889	1.80E-07	5.12E-04		
7/31/2009	960	4.8	1.8550759	25	0.889	1.82E-07	5.17E-04	•	
				SUMI	MARY			•	
		ka =	1.89E-07			Acceptance cr	iteria =	25	%
		<u>ki</u>	¥ .= .,	-	<u>Vm</u>				
		k1 =	1.98E-07	cm/sec	5.0	%	Vm =	ka-ki	x 100
		k2 =	1.95E-07		3.2	%	·	ka	-
		k3 =	1.80E-07		4.5	%			
		k4 =	1.82E-07		3.6	%			
								_	
	Hydraulic cor	nductivity	k =	1.89E-07	cm/sec	5.36E-04	ft/day		
	Void Ratio		e =	0.53					
	Porosity		n =	0.35					
	Bulk Density		$\gamma =$	2.03	g/cm3	126.9	pcf		
	Water Conte		W =	0.30	cm3/cm3	(at 20 deg C)			
	Intrinsic Pern	neability	kint =	1.94E-12	cm2	(at 20 deg C)			
	Liquid Limit	LL	20						
	Plastic Limit	PL	17			Respectfully Su	ubmitted		
	Plasticity Ind		3						
	- 200 Sieve		27	%		11,	an.		
		,			•	Kalsh			
	+ No 40 Siev		2	%		100011			
	+ No 4 Sieve	'	1	%		Robert M. Duk	e, P.E.		

ETTL Engineers & Consultants Inc.

GEOTECHNICAL * MATERIALS * ENVIRONMENTAL * DRILLING * LANDFILLS


Project:	Luminant Martin Lake Supplemental, Tatum, Texas					
Client:	HDR					
Contractor:						
Job No.	G 3219 - 09					
Sample No.:	9228	Date Sample	ed: 8/26/2009			
Material Origin:	TP- 31					
Sampling Info. provided By:	Jacob LeNoir					
Location Sampled:	TP- 31					
Material Description:	Tan & Reddish Tan Silty Sand					
Sampled By:	Jacob LeNoir					
Technician:	T. Sliger	Date:	8/28/2009			

Maximum Dry Density: (ASTM D 698)	115.9	(lb/ft ³)
Optimum Moisture Content:	13.2	(%)

Optimum Moisture Content:	13.2	%)	
Classification	LL	20	

Classification	LL	20	-200 Sieve	27%
	PL	17	+40 Sieve	2%
	PI	3	+4 Sieve	1%
Proctor Points				

Procto	r Points
% Moisture	Dry Density (lb/ft ³)
9.6%	111.1
11.9%	114.9
14.3%	115.1
16.3%	110.9
18.6%	105.7

Respectfully Submitted

Robert M. Duke, P.E.

210 Beech Street Texarkana, AR 71854 870-772-0013 Phone 870-216-2413 Fax 1717 East Erwin Tyler, Texas 75702 903-595-4421 Phone 903-595-6113 Fax www.ettlinc.com

707 West Cotton Street Longview, Texas 75604-5505 903-758-0915 Phone 903-758-8245 Fax Established in 1960, Golder Associates is a global, employee-owned organization that helps clients find sustainable solutions to the challenges of finite resources, energy and water supply and management, waste management, urbanization, and climate change. We provide a wide range of independent consulting, design, and construction services in our specialist areas of earth, environment, and energy. By building strong relationships and meeting the needs of clients, our people have created one of the most trusted professional services organizations in the world.

Africa + 27 11 254 4800 Asia + 852 2562 3658 Australasia + 61 3 8862 3500 Europe + 356 21 42 30 20 North America + 1 800 275 3281 South America + 56 2 2616 2000

solutions@golder.com www.golder.com

Golder Associates Inc. 500 Century Plaza Drive, Suite 190 Houston, TX 77073 USA

Tel: (281) 821-6868 Fax: (281) 821-6870

